
ME 17 Final P2 Alex Nguyen

Oil Spill Simulation

Note: I confirm that I did not use codes from the web or from past years’ assignments and
that the work I submit is my own and my own only.

1 Introduction

Figure 1: Aerial Photo of Refugio Oil Spill

On May 20, 2015, a broken onshore pipeline near Santa Barbara spewed oil down a storm
drain and into the ocean for several hours before it was shut off. Currents and natural diffusion of
contaminants are two effects that account for how the oil spreads throughout the ocean. According
to health officials, a beach concentration of oil greater than climit = 0.006 is deemed unsafe. When
the oil concentration becomes greater than climit, the city of Santa Barbara will close the beach to
keep the public safe.

You can model this situation by a 2D advection-diffusion equation. Consider the domain Ω =
[xl;xr]× [yb; yt], a given velocity vector ~v = (vx, vy) which represents the ocean’s currents, a source
term f = f(x,y,t) representing the amount of oil spilling into the ocean, and a concentration c =
c(x,y,t) representing the concentration of oil in the ocean. The following is a representation of the
2D advection-diffusion equation:

∂c

∂t
+ ~v · ∇c = D∆c+ f, for all (x, y) ∈ Ω (1)

1



ME 17 Final P2 Alex Nguyen

where D is the rate of diffusion of oil in water, with the initial conditions

c(tstart, x, y) = 0

We are to assume the left, right, and top boundaries of the domain Ω are far enough, so that
the oil concentration stays zero at those boundaries during the course of the simulation. We can
impose the following Dirichlet boundary conditions:

c(t, x, y) = 0, if x = xl or x = xr or y = yt

At the bottoms boundary of the domain Ω (i.e. the shoreline), the oil concentration has to
satisfy the no-flux boundary condition. We can impose the following Neumann boundary condition:

D
∂c

∂y
− vyc = 0, if y = yb

Figure 2: Schematic Representation of the Refugio Oil Spill

2



ME 17 Final P2 Alex Nguyen

The mathematical representation of the problem to be solved is described as:


PDE : ∂c

∂t + ~v · ∇c = D∆c+ f, (x, y) ∈ Ω = [xl;xr]× [yb; yt]

BC : c(t, x, y) = cbc(t, x, y), if x = xl, x = xr, or y =yt

D ∂c
∂y − vyc = g(t, x, y), if y = yb

IC : c(tstart, x, y) = cstart(x, y), (x, y) ∈ Ω

Where f = f(t,x,y), cbc = cbc(t,x,y), g = g(t,x,y), and cstart = cstart(x,y) are given functions
describing the source term, the boundary conditions, and the inital condition.

The goal of this exercise is to write a MATLAB code to solve this problem. The discretized
numerical solution will be compared to the exact solution. Then, the code will be used as a
simulation tool to determine when the beaches are safe or unsafe.

2 Discretization of Exact Solution

2.1 Problem 2a.

Write down an approximation for:

∂c

∂t
+ ~v · ∇c = D∆c+ f

using methods learned in class.

2.2 Algorithm

In order to write an approximation for the PDE above, we need to discretize both the advection
and diffusion terms in the PDE.

For advection, we need to apply the upwind scheme. The upwind scheme characterizes a class
of numerical discretization methods for solving hyperbolic PDEs by using differencing biased in the
direction determined by the sign of the characteristic speeds. For stability, the Courant Friedrichs
Lewy condition (CFL) should be satisfied:

|c∆t
∆x
| ≤ 1

3



ME 17 Final P2 Alex Nguyen

In order to solve the advection part of this equation, we utilize tools from the Euler Step method
which is a numerical method to solve first order first degree differential equation with a given ini-
tial value. It is the most basic explicit method for numerical integration of ordinary differential
equations and is the simplest Runge Kutta method.

Lets consider the 2D advection case, where there are two different velocity fields v1 and v2:

~v · ∇c = vx
∂c

∂x
+ vy

∂c

∂y

For the velocity fields, the discretization of ∂c
∂x and ∂c

∂y depends on the sign of vx and vy. There
will be four cases to look at for the velocity fields, which depends on if vx and vy are positive
or negative. We will use the upwind scheme to approximate the 2D advection, which yields the
following equations:

vx

{ cni+1,j−cni,j
∆x if vx < 0

cni,j−cni−1,j

∆x if vx ≥ 0
vy

{ cni,j+1−cni,j
∆y if vy < 0

cni,j−cni,j−1

∆y if vy ≥ 0

Now, we can solve for the advection part of equation (1) in terms of the first order upwind
scheme. Recalling the different cases of velocity signs, we can numerically solve for the term ~v ·∆c:

1. vx ≥ 0, vy ≥ 0 : vx
cni,j − cni−1,j

∆x
+ vy

cni,j − cni,j−1

∆y

2. vx ≥ 0, vy < 0 : vx
cni,j − cni−1,j

∆x
+ vy

cni,j+1 − cni,j
∆y

(2)

3. vx < 0, vy ≥ 0 : vx
cni+1,j − cni,j

∆x
+ vy

cni,j − cni,j−1

∆y

4. vx < 0, vy < 0 : vx
cni+1,j − cni,j

∆x
+ vy

cni,j+1 − cni,j
∆y

For diffusion, the terms to be analyzed are the oil concentration diffusion and source term. In
multi-variable notation, our terms will look like the following D∆c + f . When this notation is
expanded in the 2D case, the diffusion and source term look like the following:

4



ME 17 Final P2 Alex Nguyen

D(
∂2c

∂x2
+
∂2c

∂y2
) + f

Where D is the diffusion constant, c is the concentration, and f is the source term. A numerical
approximation can be made for this differential equation setup, which looks like the following:

D∆c+ f = D(
cni+1,j − 2cni,j + cni−1,j

∆x2
+
cni,j+1 − 2cni,j + cni,j−1

∆y2
) + fi,j (3)

The last term to be discretized is the partial derivative of oil concentration with respect to time.
This term is used when iterating our numerical approximation to find the next index value of our
solution.

∂c

∂t
=
cn+1
i,j − cni,j

∆t
(4)

Now that we know how to discretize all the terms of our equation, its time to actually discretize
the full equation for the oil spill. Using our knowledge of numerical approximation, we can find a
discretized advection-diffusion solution for equation (1) below:

cn+1
i,j − cni,j

∆t
+vx

cni+1,j − cni,j
∆x

+vy
cni,j+1 − cni,j

∆y
= D(

cni+1,j − 2cni,j + cni−1,j

∆x2
+
cni,j+1 − 2cni,j + cni,j−1

∆y2
)+fi,j

Now we isolate cn+1
i,j , to find the numerical approximation for the next point (n + 1) when

iterating our numerical solution:

cn+1
i,j = cni,j+D∆t(

cni+1,j − 2cni,j + cni−1,j

∆x2
+
cni,j+1 − 2cni,j + cni,j−1

∆y2
)+fi,j∆t−vx∆t

cni+1,j − cni,j
∆x

−vy∆t
cni,j+1 − cni,j

∆y

Note: For advection, this numerical approximation assumes both velocity values are negative.
This relation was chose because the next two parts of the assignment have negative velocity field
values.

5



ME 17 Final P2 Alex Nguyen

3 Maximum Error of Numerical and Exact Solution

3.1 Problem 2b.

Implement the numerical scheme and test your code using the following example:


Ω = [−1; 3]× [−1.5; 1.5]

D = 0.7

(vx, vy) = (−0.8,−0.4)

cexact = sin(x)cos(y)exp(−t)

Where Ω is the domain, D is the diffusivity, (vx, vy) is the velocity field, and cexact is the exact
solution. The initial condition cstart(x,y), the boundary conditions cbc(t,x,y) and g(t,x,y), and the
source term f(t,x,y) should be deduced from the given exact solution cexact.

Solve the advection-diffusion equation from tstart = 0 to tfinal = 0.2 using the grid resolutions
(Nx, Ny) = (20,15), (40,30), and (80,60). Use the time-step ∆t = 0.2∆x2.

Calculate the maximum error between the numerical solution and the exact solution at t =
tfinal. Then, check that the error gets roughly divided by 2 for each grid refinement.

3.2 Derivation of Equations

In order to solve for the maximum error of the concentration, we need to solve for the inital
solution cstart(x, y), the boundary condition cbc(t,x,y) and g(t,x,y), and the source term f(t,x,y).
All of these equations should be deduced from the exact solution cexact = sin(x)cos(y)exp(−t).

The initial solution is given by the following relation cstart(tstart, x, y). This equation evaluates
the exact solution at time tstart, which gives the following equation:

cstart = (tstart, x, y) = sin(x)cos(y)exp(−tstart) = sin(x)cos(y)

The boundary condition for the left, right, and top walls are given by the exact solution cexact.
For this, we impose the Dirichlet boundary condition to obtain the following equation:

cbc(t, x, y) = cexact(t, x, y) = sin(x)cos(y)exp(−t)

The boundary condition for the bottom wall is given by the no-flux boundary condition. For
this we apply the Neumann boundary condition to the balanced flux equation and we get a relation
for the term g(t,x,y):

6



ME 17 Final P2 Alex Nguyen

g(t, x, y) = D
∂c

∂y
− vyc

= −Dsin(x)sin(y)exp(−t)− vycexact(t, x, y)

The source term equation is found by applying the exact solution to equation (1) and solving
for the f(t,x,y) term. After taking all partial derivatives and isolating f(t,x,y), you get the following
relation for the source term:

f(t, x, y) =
∂c

∂t
−D∆c+ ~v · ∇c

= (−sin(x)cos(y) + vxcos(x)cos(y)− vysin(x)sin(y) + 2Dsin(x)cos(y))exp(−t)

3.3 Algorithm

In order to solve for the approximated numerical solution of the oil spill concentration, you
need to use the discretized version formulated above in section 2 which is shown below:

cn+1
i,j = cni,j+D∆t(

cni+1,j − 2cni,j + cni−1,j

∆x2
+
cni,j+1 − 2cni,j + cni,j−1

∆y2
)+fi,j∆t−vx∆t

cni+1,j − cni,j
∆x

−vy∆t
cni,j+1 − cni,j

∆y

The next important step is to correctly apply the boundary conditions to the problem’s domain.
For the top, left, and right wall we apply the Dirichlet boundary condition. This corresponds to
cbc = cexact, which can be shown implemented in the MATLAB code shown below. For the bottom
wall, we apply the Robin boundary condition. Since the oil concentration needs to satisfy conser-
vation law, this means whatever comes in, must come out! Using this relation, you will be able to
find a ”ghost point” for our discretized equation at indice (i,j-1). Then, plug this ghost point into
our discretized equation to find our solution for the bottom wall.

Once all the boundary conditions are satisfied, you can solve for the maximum error of the
concentration at tfinal. The error is found by taking the absolute value of the difference between
the numerical and exact solution. This will yield a matrix of values corresponding to the error.
Now, to obtain one max value, you need to use the MATLAB function max() twice on your error
matrix. This will output the maximum error value from the entire matrix of error values.

After calculating the error for one of the grid resolutions, you can find the other grid resolution
max errors easily by changing the (Nx, Ny) values. In this case, the grid resolution will be doubled
with each refinement.

7



ME 17 Final P2 Alex Nguyen

3.4 Results

Grid Resolution (Nx, Ny) Maximum Error

(20,15) 0.019654

(40,30) 0.0096302

(80,60) 0.0047608

The table above shows the maximum error of between eh numerical and the exact solution
at tfinal. The error associated with each case is calculated by taking the absolute value of the
difference between the numerical and exact diffusion solution. To obtain the maximum error, you
need to apply the max() MATLAB function twice in order to get one maximum error since this is
a 2D case. The error is roughly divided by 2 for each grid refinement. This can be seen below for
the two cases in this calculation..

For (Nx, Ny) = (20, 15) to (40,30) and (Nx, Ny) = (40, 30) to (80,60):

(20, 15)⇒ (40, 30) error ratio :
0.019654

0.0096302
= 2.0409 (∼ 2)

(40, 30)⇒ (80, 60) error ratio :
0.0096302

0.0047608
= 2.0228 (∼ 2)

As you can see, this confirms the statement that the error should be roughly one-half the
previous grid refinement when increasing the grid resolution by two.

8



ME 17 Final P2 Alex Nguyen

(a) Grid Resolution (20,15) (b) Grid Resolution (40,30)

(c) Grid Resolution (80,60)

Figure 3: Mesh of Grid Resolution (Nx, Ny) at tfinal = 0.2 s

9



ME 17 Final P2 Alex Nguyen

3.5 MATLAB

%ME 17 Final P2b - Alex Nguyen

%I confirm that I did not use codes from the web or fram past years

%assignments and that the work I submit is my own and my own only

clc; clear; close all;

%% Initial Data:

% Domain:

xl = -1; xr = 3; Nx = 20;

yb = -1.5; yt = 1.5; Ny = 15;

% Discretize the and and y axis:

x = linspace(xl, xr, Nx); dx = x(2) - x(1);

y = linspace(yb, yt, Ny); dy = y(2) - y(1);

% Diffusion coefficient:

D = 0.7;

% Velocity Field

vx = -0.8; %x-velocity

vy = -0.4; %y-velocity

% Initial and final time:

t = 0; tfinal=0.2;

% Exact solution:

Exact = @(t,x,y) sin(x)*cos(y)*exp(-t);

% Boundary Conditions:

Cbc = @(t,x,y) Exact(t,x,y);

g = @(t,x,y) -D*sin(x)*sin(y)*exp(-t) - vy*Exact(t,x,y);

% Initial Condition

Cstart = @(x,y) Exact(0,x,y);

% Source Term

10



ME 17 Final P2 Alex Nguyen

f = @(t,x,y) -sin(x)*cos(y)*exp(-t) + vx*cos(x)*cos(y)*exp(-t) - ...

vy*sin(x)*sin(y)*exp(-t) + 2*D*sin(x)*cos(y)*exp(-t);

% Initial solution:

cn = zeros(Nx,Ny);

for i = 1:Nx

for j = 1:Ny

cn(i,j) = Cstart(x(i),y(j));

end

end

%% Computation:

% Define the time step:

dt = 0.2*dx*dx;

% Preallocation:

cnp1 = zeros(Nx,Ny);

ce = zeros(Nx,Ny);

% March in time

while t < tfinal

if t + dt > tfinal

dt = tfinal - t; %ensures tfinal is reached

end

% Use update rule:

for i = 2:Nx-1

for j = 2:Ny-1

cnp1(i,j) = cn(i,j) + D*dt*(cn(i+1,j) - 2*cn(i,j) + cn(i-1,j))/dx/dx ...

+ D*dt*(cn(i,j+1) - 2*cn(i,j) + cn(i,j-1))/dy/dy ...

+ dt*f(t,x(i),y(j)) - dt*vx*(cn(i+1,j) - cn(i,j))/dx - ...

dt*vy*(cn(i,j+1)-cn(i,j))/dy;

end

end

% Apply Boundary Conditions

for j = 1:Ny

11



ME 17 Final P2 Alex Nguyen

cnp1(1,j) = Cbc(t+dt,xl,y(j)); %Left Boundary

cnp1(Nx,j) = Cbc(t+dt,xr,y(j)); %Right Boundary

end

for i = 1:Nx

cnp1(i,Ny) = Cbc(t+dt,x(i),yt); %Top Boundary

end

for i = 2:Nx-1

cnyo = cn(i,2) - 2*dy*(g(t,x(i),yb) + vy*cn(i,1))/D; %Ghost Value

cnp1(i,1) = cn(i,1) + D*dt*(cn(i+1,1) - 2*cn(i,1) + cn(i-1,1))/dx/dx ...

+ D*dt*(cn(i,2) - 2*cn(i,1) + cnyo)/dy/dy ...

+ dt*f(t,x(i),yb) - dt*vx*(cn(i+1,1) - cn(i,1))/dx - ...

dt*vy*(cn(i,2) - cn(i,1))/dy; %Bottom Boundary

end

% Update time and prepare for next iterate:

t = t + dt;

cn = cnp1;

% Exact solution:

for i = 1:Nx

for j = 1:Ny

ce(i,j) = Exact(t,x(i),y(j));

end

end

end

% Plots

subplot(2,1,1)

mesh(x,y,cn’)

12



ME 17 Final P2 Alex Nguyen

title(’Numerical Concentration Solution at t = 0.2 hr’)

xlabel(’x’); ylabel(’y’); zlabel(’c’);

subplot(2,1,2);

mesh(x,y,ce’);

title(’Exact Concentration Solution at t = 0.2 hr’)

xlabel(’x’); ylabel(’y’); zlabel(’c’);

z = sprintf(’Grid Resolution (N_x,N_y) = (%d, %d)’,Nx,Ny);

suptitle(z)

% Error

error = max(max(abs(cn - ce)));

disp([’Maximum Error: ’ num2str(error)])

4 Concentration of Oil Spill Over Time

4.1 Problem 2c.

Use your code to simulate the spreading of the oil in the ocean using the following parameters:



Ω = [0; 12]× [0; 3]

D = 0.2

(vx, vy) = (−0.8,−0.4)

cstart(t, x, y) = 0

cbc(t, x, y) = 0

g(t, x, y) = 0

f(t, x, y) =

{
1
2(1− tanh(

√
(x−xs)2+y2−rx

ε )), if t < 0.5

0, if t > 0.5

Ω is the domain, D is the diffusivity, and (vx, vy) is the velocity field. The initial condition is
cstart(t,x,y), and the boundary conditions are cbc(t,x,y) and g(t,x,y). The source term f(t,x,y) is
given in this problem, but is subject to change depending on the time value present.

Solve the advection-diffusion equation from tstart = 0 to tfinal = 10 using Nx = 80 grid points
in the x-direction and Ny = 20 grid points in the y-direction. Let the time step be ∆t = 0.2∆x2.
Where values xs = 10, rs = 0.1, and ε = 0.1.

13



ME 17 Final P2 Alex Nguyen

Plot the oil concentration vs time at the location of the three beaches, i.e. at (i,j) = (20,1),
(40,1), and (60,1). Determine the time periods at which each of the three beaches should be closed.
Take a snapshot of the oil concentration at t = 1, 4, and 7 hours (use MATLAB commands mesh
and contourf ).

4.2 Algorithm

In order to simulate the spreading of the oil in the ocean, you must known your parameters
first. The inital and boundary conditions are all zero for all values of t, x, and y. The only nonzero
equation is the source term, but only for a small period of time after tstart. Then, the source term
goes to zero eventually.

As done previously, in order to numerically approximate the oil spill concentration, you need
to use the discretized version of the oil spill equation formulated in section 2 which is shown below
as reference again.

cn+1
i,j = cni,j+D∆t(

cni+1,j − 2cni,j + cni−1,j

∆x2
+
cni,j+1 − 2cni,j + cni,j−1

∆y2
)+fi,j∆t−vx∆t

cni+1,j − cni,j
∆x

−vy∆t
cni,j+1 − cni,j

∆y

The next important step is to apply the boundary conditions for our simulation. For the top,
left, and right wall the problem states the boundaries of the domain Ω are far enough, so that the
oil concentration stays zero throughout the course of the simulation.

cbc(t, x, y) = 0 for x = xl, x = xr, or y = yt

For the bottom wall of the domain Ω, the oil spill concentration needs to satisfy the no-flux
condition boundary condition which looks like the following:

D
∂c

∂y
− vyc = 0 for y = yb

The last step for applying boundary conditions is figuring out what the values to set your cor-
ners in the computational domain. Luckily, in this case, all the corners are equal to zero due as
stated in the problem statement. This makes life easy, and we can apply the Dirichlet boundary
conditions at each of the four corners which yield a concentration of zero.

The next step is to plot the oil concentration vs time at the location of the three beaches, i.e.
(i,j) = (20,1), (40,1), and (60,1). This is done by preallocating variables which to be able to store
the numerical value of the concentration at each value (i,j) throughout each iteration. It is also
important to make an array for the time values of these concentration arrays. Now, we are able to
plot each of individual beach’s oil concentration with respect to time.

14



ME 17 Final P2 Alex Nguyen

To determine the time periods at which each of the three beaches should be closed, you need to
use logic statements or look at the array of data after the simulation is completed. The logic state-
ment method is shown in my MATLAB code, but I also looked at my oil concentration and time
data to ensure the correctness of data. When creating logic statements to display the availability of
the beach, you need to set your climit = 0.006. You can then proceed to write if statements for when
the concentration of the beach is less than climit at index = i and for when the concentration of the
beach is greater than or equal to climit at a index = i + 1. With these two if-statements met, you
will then want to output the time value of the while loop to know when the beaches should be closed.

The same process can be done for deciding when a beaches should open, except for this case you
would want to look at the opposite case. You can then proceed to write if statements for when the
concentration of the beach is greater than or equal to climit at index = i and for when the concentra-
tion of the beach is less than than climit at a index = i + 1. With these two if-statements met, you
will then want to output the time value of the while loop to know when the beaches can open again.

Also, you could observe how the oil spill concentration advects and diffuses in the ocean by
using the mesh and contourf functions in MATLAB. In order to see the progression over time, you
would put these commands in the while loop with the pause(dt) command. For sake of time, I
left the mesh and contourf commands outside my while loop to obtain the snapshots of the oil
concentration at t = 1, 4, and 7.

4.3 Results

Beach 1 Beach 2 Beach 3

(i,j) (20,1) (40,1) (60,1)

closed t = 6.3174 hr t = 3.2810 hr t = 0.5030 hr

open t = N/A t = 8.9201 hr t = 3.7563 hr

The calculated time values for when the beaches should be closed or opened are shown above.
The unsafe oil concentration limit chosen for when a beach should close is given by climit = 0.006.
Once the concentration value goes above this value, city health officials say the beach should be
closed to the public. The reverse is also true, once the beach concentration value goes below 0.006
the beach should be safe to be opened again.

Using logic statements in MATLAB, you can find the time values for which the beaches will
need to be closed or when they can be opened again. Also, this can be done by looking at the array
of concentration values for beach 1, 2, and 2. The calculated time values are rough estimates for
the opening and closing the beach values. You’ll notice one beach will not be able to open within
the time span of tstart to tfinal. This is because its concentration value is still above 0.006 at 10
hrs when the simulation stops. If tfinal were to be increased from 10 hours to some greater value,

15



ME 17 Final P2 Alex Nguyen

at some point beach 1 will reopen.

You notice that beach 3 closes first, then beach 2, and then beach 1. This is due to how I
define the beach values corresponding to the indices. The closure times make sense because the
first beach to be closed should be the farthest right in the computation domain, which is beach
3 (60,1). Then the next beach to be closed should be 2 then beach 1. Likewise, the opening of
the beaches make sense. Since beach 3 was the first to close, it should be the first to open. Then,
beach 2 should open. Beach 1 didn’t have enough time to meet the safety standard to be opened,
but at some later point in time beach 1 will be safe to be reopened.

Also, the snapshots of the oil concentration at the times 1, 4, and 7 hours can be seen below.
You can see that as time progresses the oil concentration will have a wider width and spread to the
left boundary of the water grid. This makes sense intuitively for me, because as time progresses
I expect the fluid to diffuse throughout the ocean. This is due to the advection-diffusion process
of the oil in the ocean, which causes the oil to spread out according to this model. The mesh and
contourf plot output is due to the source term f(t,x,y), since the inital and boundary conditions
are both zero. So the only term affecting the plots is the source term.

Note: This solution is for the specified grid points of (Nx, Ny) = (80,20). If the grid points
were to change, then accuracy of the solution will change as well. In general, a more accurate
solution arises when you create a finer grid point resolution in the x-direction and y-direction. In
this problem, the grid points stay constant and no maximum error calculation is required.

16



ME 17 Final P2 Alex Nguyen

(a) Beach Concentration

Figure 4: Oil Concentration vs Time at the Location of the Three Beaches

(a) Oil Concentration at t = 1 hrs (b) Oil Concentration at t = 4 hrs

(c) Oil Concentration at t = 7 hrs

Figure 5: Oil Concentration at Different Times

17



ME 17 Final P2 Alex Nguyen

4.4 MATLAB

%ME 17 Final P2c - Alex Nguyen

%I confirm that I did not use codes from the web or from past years

%assignments and that the work I submit is my own and my own only

clc; clear; close all;

%% Initial Data:

% Domain:

xl = 0; xr = 12; Nx = 80;

yb = 0; yt = 3; Ny = 20;

% Discretize the and and y axis:

x = linspace(xl, xr, Nx); dx = x(2) - x(1);

y = linspace(yb, yt, Ny); dy = y(2) - y(1);

% Diffusion coefficient:

D = 0.2;

% Velocity Field

vx = -0.8; %x-velocity

vy = -0.4; %y-velocity

% Initial and final time:

t = 0; tfinal = 10;

% Exact solution:

Exact = @(t,x,y) sin(x)*cos(y)*exp(-t);

% Boundary Conditions:

Cbc = @(t,x,y) 0;

g = @(t,x,y) 0;

% Initial Condition

Cstart = @(t,x,y) 0;

% Source Term Constants

18



ME 17 Final P2 Alex Nguyen

xs = 10; rs = 0.1; ep = 0.1;

% Initial solution:

cn = zeros(Nx,Ny);

for i = 1:Nx

for j = 1:Ny

cn(i,j) = Cstart(t,x(i),y(j));

end

end

%% Computation:

% Define the time step:

dt = 0.2*dx*dx;

% Preallocation:

cnp1 = zeros(Nx,Ny);

ce = zeros(Nx,Ny);

f = zeros(Nx,Ny);

cn1 = zeros(length(0:dt:tfinal),1);

cn2 = zeros(length(0:dt:tfinal),1);

cn3 = zeros(length(0:dt:tfinal),1);

tn = zeros(length(0:dt:tfinal),1);

n = 1; %initial counter value

% March in time

while t < tfinal

if t + dt > tfinal

dt = tfinal - t; %ensures tfinal is reached

end

% Source Term

if t < 0.5

f = @(t,x,y) 0.5*(1 - tanh((sqrt((x - xs)^2 + y^2) - rs)/ep));

elseif t > 0.5

f = @(t,x,y) 0;

end

% Use update rule:

19



ME 17 Final P2 Alex Nguyen

for i = 2:Nx-1

for j = 2:Ny-1

cnp1(i,j) = cn(i,j) + D*dt*(cn(i+1,j) - 2*cn(i,j) + cn(i-1,j))/dx/dx ...

+ D*dt*(cn(i,j+1) - 2*cn(i,j) + cn(i,j-1))/dy/dy ...

+ dt*f(t,x(i),y(j)) - dt*vx*(cn(i+1,j) - cn(i,j))/dx - ...

dt*vy*(cn(i,j+1)-cn(i,j))/dy;

end

end

% Left and Right Boundary

for j = 1:Ny

cnp1(1,j) = Cbc(t+dt,xl,y(j)); %Left

cnp1(Nx,j) = Cbc(t+dt,xr,y(j)); %Right

end

% Top Boundary

for i = 1:Nx

cnp1(i,Ny) = Cbc(t+dt,x(i),yt); %Top

end

% Bottom Boundary

for i = 2:Nx-1

cnyo = cn(i,2) - 2*dy*(g(t,x(i),yb) + vy*cn(i,1))/D; %Ghost Value

cnp1(i,1) = cn(i,1) + D*dt*(cn(i+1,1) - 2*cn(i,1) + cn(i-1,1))/dx/dx ...

+ D*dt*(cn(i,2) - 2*cn(i,1) + cnyo)/dy/dy ...

+ dt*f(t,x(i),yb) - dt*vx*(cn(i+1,1) - cn(i,1))/dx - ...

dt*vy*(cn(i,2) - cn(i,1))/dy; %Bottom

end

% Bottom Left and Bottom Right Corner

for j = 1:Ny

20



ME 17 Final P2 Alex Nguyen

cnp1(1,1) = Cbc(t+dt,xl,yb); %Bottom Left

cnp1(Nx,Ny) = Cbc(t+dt,xr,yb); %Bottom Right

end

% Beach Concentrations and Time

cn1(n) = cn(20,1); %Beach 1

cn2(n) = cn(40,1); %Beach 2

cn3(n) = cn(60,1); %Beach 3

tn(n) = t;

% Update values and prepare for next iterate:

n = n + 1; %Counter

t = t + dt; %Time

cn = cnp1; %Concentration

end

% Determine When the Beaches Should Be Closed!

for i = 1:length(tn)-1

if cn1(i) < 0.006 && cn1(i+1) >= 0.006

disp([’Beach 1 at (20,0) should be closed at time ’ num2str(tn(i)) ’ hrs’]);

break

end

end

for i = 1:length(tn)-1

if cn2(i) < 0.006 && cn2(i+1) >= 0.006

disp([’Beach 2 at (40,0) should be closed at time ’ num2str(tn(i)) ’ hrs’]);

break

end

end

for i = 1:length(tn)-1

21



ME 17 Final P2 Alex Nguyen

if cn3(i) < 0.006 && cn3(i+1) >= 0.006

disp([’Beach 3 at (60,0) should be closed at time ’ num2str(tn(i)) ’ hrs’]);

break

end

end

% Determine When the Beaches Should Be Opened!

for i = 1:length(tn)-1

if cn1(i) >= 0.006 && cn1(i+1) < 0.006

disp([’Beach 1 at (20,0) should be opened at time ’ num2str(tn(i)) ’ hrs’]);

break

end

end

for i = 2:length(tn)

if cn2(i) >= 0.006 && cn2(i+1) < 0.006

disp([’Beach 2 at (40,0) should be opened at time ’ num2str(tn(i)) ’ hrs’]);

break

end

end

for i = 2:length(tn)

if cn3(i) >= 0.006 && cn3(i+1) < 0.006

disp([’Beach 3 at (60,0) should be closed at time ’ num2str(tn(i)) ’ hrs’]);

break

end

end

% Concentration Plot Over Time

figure(1);

subplot(2,1,1)

22



ME 17 Final P2 Alex Nguyen

contourf(x,y,cn’)

xlabel(’x’); ylabel(’y’); zlabel(’c’);

subplot(2,1,2)

mesh(x,y,cn’)

axis([xl xr yb yt 0 0.1])

xlabel(’x’); ylabel(’y’); zlabel(’c’);

z = sprintf(’Concentration c at time t = %4.2f hrs’,t);

suptitle(z)

% Oil Concentration vs Time at the Three Beaches

figure(2)

plot(tn,cn1,’k’,tn,cn2,’b’,tn,cn3,’r’);

hold on;

plot([0 tfinal],[0.006 0.006],’--’)

title(’Beach Oil Concentration’) %(i,j) = (60,0)

ylabel(’Concentration’)

xlabel(’t [hr]’)

legend(’Beach 1’,’Beach 2’,’Beach 3’,’c_{limit}’,’location’,’best’)

23


