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ABSTRACT OF THE THESIS

Aerial Vehicle Navigation with Terrestrial Signals of Opportunity:
Performance Analysis and Transmitter Selection

By

Alexander A. Nguyen

Master of Science in Mechanical and Aerospace Engineering

University of California, Irvine, 2022

Professor Zaher (Zak) M. Kassas, Chair

The performance analysis and transmitter selection for an aerial vehicle navigating with

terrestrial signals of opportunity (SOPs) is studied. The following problem is considered.

An aerial vehicle is navigating in an environment where global navigation satellite system

(GNSS) signals are unavailable. The aerial vehicle is assumed to be equipped with an on-

board receiver capable of extracting psuedorange observations from an abundant number of

terrestrial SOP towers. Each SOP tower contains dynamic, stochastic clock error states (bias

and drift) which are estimated as the difference between the receiver’s and each SOP’s clock

bias and clock drift terms. A dynamic estimator (e.g., an extended Kalman filter (EKF)) is

employed to fuse the psuedorange observations to simultaneously localize the aerial vehicle

and SOP towers. A lower bound on the error covariance of radio simultaneous localiza-

tion and mapping (SLAM) with terrestrial SOPs is derived. In addition, it is shown that the

so-called radio SLAM base case is observable, in which an aerial vehicle with imperfect knowl-

edge about its initial states is navigating in an environment containing one unknown SOP

tower and two partially known SOP towers (i.e., towers whose position are known, but clock

error states are unknown). Furthermore, the computationally efficient transmitter selection

strategies, termed opportunistic greedy selection (OGS) and one shot selection (OSS), for

selecting the most informative terrestrial SOPs subset is developed. These transmitter selec-

x



tion strategies will exploit the additive, iterative properties of the Fisher Information Matrix

(FIM) to minimize the aerial vehicle’s average position error variance (i.e., A-optimality

criterion). Simulation results demonstrate the derived lower bound on the error covariance

numerically via Monte Carlo (MC) runs and analyzes the performance of different trans-

mitter selection strategies. Experimental results are presented in two different scenarios:

(i) unmanned aerial vehicle (UAV) with an initial estimate of its position making pseudor-

ange observations on two partially known and one unknown cellular SOP, and (ii) U.S. Air

Force high altitude aircraft navigating with pseudorange observations from terrestrial SOPs

in a rural environment tasked with selecting K = 15 out of M = 57 total SOPs and in a

semi-urban environment tasked with selecting K = 9 out of M = 18 total SOPs.
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Chapter 1

Introduction

1.1 Background

Many modern aerial vehicle navigation systems, whether low altitude unmanned aerial ve-

hicles (UAVs) or high altitude aircraft, rely heavily on global navigation satellite system

(GNSS) signals [1, 2]. However, relying on GNSS alone does not yield a continuous flow of

resilient and precise aerial vehicle position, speed, and time estimates [3]. In recent years,

GNSS radio frequency interference (RFI) events have increased dramatically, threatening

the safety of flight operations [4] and calling for a reliable alternative to GNSS signals in

the event that these signals become unusable [5]. GNSS-challenged environments, e.g., those

experiencing spoofing [6] or jamming [7], require an alternative to GNSS for safe and reliable

navigation. These alternative approaches can include the use of sensors with complementary

sensing modalities (e.g., lasers [8], ultrasonic [9], cameras [10], and inertial measurement

units [11]).

Another approach is radio navigation-based, which utilize signals of opportunity (SOPs)

[12, 13, 14] whenever GNSS signals become unusable [15]. SOPs can be terrestrial-based
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(e.g., AM/FM radio [16, 17], cellular [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36], and digital television [37, 38, 39],) or space-based (e.g., low Earth

orbit (LEO) satellites [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50]). These signals were not

intended for navigation purposes, but the literature has shown that they can be exploited

for such purposes. SOPs are abundant, transmitted in a wide range of frequencies, more

powerful than GNSS signals, and geometrically diverse. These inherent attributes of SOPs

compensate for the limitations of GNSS signals. Among the different SOP types, cellular

signals have shown tremendous promise, with meter-level accurate navigation demonstrated

on ground and aerial vehicles [51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66].

However, unlike the states of a GNSS space vehicle, SOP states are typically unknown

during navigation which requires them to be estimated on the fly [67]. This is similar to

the simultaneous localization and navigation (SLAM) estimation problem in robotics [68].

In traditional SLAM, an agent constructs a map of the environment while simultaneously

localizing itself within this map. Typically, an environment is composed of static landmarks,

e.g., walls, posts, and corners. However, unlike traditional SLAM, SOPs are mapped as

spatio-temporal landmarks composed of dynamic, stochastic states (i.e., clock error terms).

The problem of simultaneously mapping ambient SOPs while localizing an aerial vehicle-

mounted receiver using PNT information is referred to as radio SLAM [69, 70].

1.2 Relevant Work and Contributions

This thesis considers the performance analysis and transmitter selection for an aerial vehicle

navigating with terrestrial SOPs. Specifically, pertaining to the following problem. An aerial

vehicle is flying in an environment where GNSS signals are unavailable. The environment

contains an abundant number ofM terrestrial SOPs with known locations (e.g., from satellite

images, databases, or radio mapping [71]) but unknown dynamic, stochastic clock error

2



states (bias and drift). The aerial vehicle is assumed to be equipped with an onboard

receiver capable of extracting pseudorange observations from the ambient SOPs’ signals. An

extended Kalman filter (EKF) is then employed to fuse these pseudorange observations to

estimate the aerial vehicle’s states (position and velocity) and the difference between the

aerial vehicle-mounted receiver’s and all terrestrial SOP’s clock bias and clock drift states,

respectively.

Assessing terrestrial SOPs on aerial vehicles, both low altitude unmanned aerial vehicles

(UAVs) and high altitude aircrafts, has been considered in the context of channel modeling,

communication, and navigation [72, 73, 74, 75, 76, 77, 78, 79]. Of particular note is the recent

study that demonstrated the tremendous potential of cellular SOPs for high altitude aircraft

navigation, showing that terrestrial cellular SOPs can be acquired and tracked at altitudes

reaching 23,000 feet above ground level and at horizontal distances of nearly 100 kilometers

and could yield meter-level accurate navigation solutions without GNSS [80, 81]. In fact, at

high altitudes, it was also discovered that dozens of terrestrial SOPs are hearable. Tracking

all such SOPs simultaneously could be formidable on platforms with limited size, weight,

power, and cost (SWaP-C) or unnecessary, since tracking a subset of the SOPs could yield

a comparable performance. Therefore, the transmitter selection (or more broadly, sensor

selection) problem is posed to mitigate the receiver’s computational strain from the over-

whelming number of ambient signals. The aerial vehicle is tasked to select a subset of the K

available terrestrial SOPs to use for navigation. In addition, the problem of determining the

minimum number of terrestrial SOPs needed for aerial vehicle navigation while performing

radio SLAM and finding a lower bound on the error covariance associated with an aerial

vehicle navigating in an unknown, or a partially known, SOP environment is posed as well.

These problems have been built upon the answers to fundamental questions discussed in

the literature; such as deterministic linearized and nonlinear observability of collaborative

opportunistic navigation [82, 83], stochastic observability of radio SLAM [84], radio SLAM

3



filter boundedness [30], radio SLAM performance [85], motion planning in radio SLAM en-

vironments [86, 87], and communication and information fusion strategies for collaborative

radio SLAM [88, 89, 90, 91]. Nevertheless, lower bounds for the radio SLAM problem have

not been established yet. These bounds are of considerable importance as they establish the

bounds on the achievable performance in an unknown or a partially known SOP environment.

Previous work has derived expressions for calculating uniform bounds of the estimation error

covariance by ensuring uniform controllability and uniform observability are satisfied simul-

taneously [92]. Furthermore, other work established performance bounds for the traditional

SLAM problem [93, 94, 95, 96, 97, 98]. However, these bounds do not apply to the problem

considered in this thesis, since radio SLAM utilizes a different observation model and the

state space contains dynamic, stochastic landmark states.

Similar problems have been studied from the context of sensor and satellite selection which

are crucial in many applications such as source localization, tracking, and navigation [99,

100, 101]. The sensor selection problem can be cast as a convex optimization problem

[102, 103, 104] or piece-wise convex optimization problem [71, 105], which propose methods

to select the optimal sensors with respect to a specific criterion. Although, sometimes it

is difficult to formulate the sensor selection problem as a convex problem so non-convex

formulations have been developed instead [106, 107, 108]. Alternatively, this problem has

been considered as a greedy sensor selection leveraging the notion of submodularity [109,

110, 111], as well as methods utilizing the Fisher information matrix (FIM) which is related

to the Cramér-Rao Lower Bound (CRLB) [112, 113, 114, 115]. It is important to point

out that, typically, the sensor selection problem discussed in the literature assumes vehicle

navigation using linear measurements for sensor fusion occurring over limited regions (on the

order of one to several hundred meters) whereas this work focuses on vehicle navigation using

nonlinear measurements for signal fusion over a large region (on the order of one to several

kilometers). Alternatively, the satellite selection problem typically formulates optimal GNSS

satellite selection algorithms focused on the geometric dilution of precision (GDOP) metric
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[116, 117, 118, 119, 120]. These algorithms were developed to select the satellites with the

most favorable spatial distribution via optimizing the GDOP metric, whereas this thesis

aims to maximize the information content (which, in turn, minimizes the estimation error

uncertainty) from SOP pseudoranges by utilizing the FIM.

The contributions of this thesis are as follows. First, the thesis demonstrates observability

for the so-called radio SLAM base case, in which an aerial vehicle with imperfect knowl-

edge about its initial states is navigating in an environment containing one unknwown SOP

tower and two partially known SOP towers (i.e., towers whose positions are known, but

clock error states are unknown) and derives a lower bound for the estimation error covari-

ance of an extended Kalman filter (EKF)-based radio SLAM framework. Second, the thesis

develops sub-optimal, yet computationally efficient, transmitter selection strategies termed

opportunistic greedy selection (OGS) and one shot selection (OSS) for selecting the most

informative transmitter subset by exploiting the additive, iterative properties of the FIM

instead of explicitly solving the rather involved optimal transmitter selection problem. The

OGS algorithm selects the most informative transmitters in multiple iterations (i.e., recur-

sive selection), whereas the OSS algorithm selects the most informative transmitters in one

iteration (i.e., batch selection), to minimize the aerial vehicle’s average position error vari-

ance (i.e., A-optimality criterion). Third, this thesis provides an analysis of the developed

transmitter selection strategies via a selection subset comparison (1–D and 2–D) and an up-

per bound on the FIM (or, lower bound on the estimation error covariance) for the selected

SOP observations.

The contributions are demonstrated in both simulation and experiment for a variety of

scenarios. Numerical simulations are presented for the lower bound on the aerial vehicle’s

error covariance while navigating via Monte Carlo (MC) runs, as well as a performance

analysis on the different transmitter selection strategies. Furthermore, the computational

cost (i.e., run-time) of the different transmitter selection strategies is shown to illustrate the

5



efficiency of the OGS and OSS strategies versus the optimal selection strategy. Furthermore,

experimental results are presented for two different scenarios with real data: (i) UAV with

an initial estimate of its position making pseudorange observations to two partially known

and one unknown cellular SOPs while performing radio SLAM without GNSS signals and (ii)

U.S. Air Force high altitude aircraft navigating without GNSS signals in a rural environment

comprised of M = 57 total cellular SOPs tasked with selecting K = 15 cellular SOPs

and in a semi-urban environment comprised of M = 18 total cellular SOPs tasked with

selecting K = 9 cellular SOPs. It is important to note, the observability analysis remains

valid for the radio SLAM base case such that a navigation solution can be obtained for (i)

and each transmitter selection strategy was found to be valid for several kilometers of the

aerial vehicle’s flight trajectory since the aerial vehicle-to-SOP geometry is approximately

stationary for sufficiently faraway SOP towers for (ii).

The contributions in this thesis have resulted in the referreed conference publications: [C1]

and [C2], and a journal publication [J1] (in preparation), which are highlighted below.

[C1] Nguyen, Z. Shadram, and Z. Kassas. (2021, September). A lower bound for the error

covariance of radio SLAM with terrestrial signals of opportunity. In Proceedings of ION

Global Navigation Satellite Systems Conference, pp. 2294–2306.

[C2] A. Nguyen and Z. Kassas. (2022, January). Transmitter selection for improved in-

formation gathering in aerial vehicle navigation with terrestrial signals of opportunity. In

Proceedings of ION International Technical Meeting, pp. 723–734.

[J1] A. Nguyen and Z. Kassas. (2022). Efficient Transmitter Selection Strategies for Im-

proved Information Gathering of Aerial Vehicle Navigation in GNSS-Denied Environments.

IEEE Aerospace and Electronic Systems Magazine. (In preparation)
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1.3 Thesis Outline

The thesis is organized by contributions, which are as follows:

Chapter 2: Observability Analysis and A Lower Bound on the Error Covariance

for Radio SLAM with Terrestrial SOPs

This chapter provides an observability analysis and derives a lower bound for the error

covariance of the radio simultaneous localization and mapping (SLAM) framework with

terrestrial signals of opportunity (SOPs) using pseudorange observations from cellular SOPs

for navigation. First, the receiver and SOP dynamics model, modified clock error states,

and the EKF model adopted for this chapter are provided. Next, an observability analysis

pertaining to the radio SLAM base case (i.e., UAV with imperfect knowledge of its initial

states using signals from two partially known cellular SOPs and an unknown cellular SOP) is

performed. Then, a lower bound for the radio SLAM problem is derived as a function of time

and number of partially known and unknown SOPs, which is subsequently demonstrated

numerically with simulation results. Finally, experimental results conducted on a UAV

performing radio SLAM without GNSS signals is provided.

Chapter 3: Efficient Transmitter Selection Strategies for Improved Information

Gathering with Terrestrial SOPs

This chapter develops computationally efficient, yet sub-optimal, transmitter selection strate-

gies for choosing the most informative subset of terrestrial signals of opportunity (SOPs) and

provides a performance analysis on the proposed selection strategies. First, the models em-

ployed in this chapter and a problem description is provided. Subsequently, followed by the

terrestrial SOP selection framework. Next, an analysis comparing each transmitter selection

strategy’s selection subset for the 1–D and 2–D FIM cases is performed and an upper bound

on the FIM for the selected SOP observations is derived. Then, numerical results are shown

for comparing the performance of the different transmitter selection strategies, the effect of

7



considering timing (pseudorange observations) versus neglecting timing (range-only obser-

vations) using the optimal selection strategy, and computational cost of each transmitter

selection strategy. Finally, experimental results for a U.S. Air Force high altitude aircraft

using the proposed selection frameworks over a valid selection region in a rural environment

and a semi-urban environment is provided.

Chapter 4: Conclusions

This chapter summarizes the contributions of this thesis.
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Chapter 2

Observability Analysis and A Lower

Bound on the Error Covariance for

Radio SLAM with Terrestrial SOPs

This chapter is organized as follows. Section 2.1 describes the receiver and SOP dynam-

ics models, modified clock error states, and the EKF model. Section 2.2 contains a brief

observability analysis pertaining to the radio SLAM base case (i.e., UAV with imperfect

knowledge of its initial states using signals from two partially known cellular SOPs and an

unknown cellular SOP). Section 2.3 derives a lower bound for the radio SLAM problem as a

function of time and number of partially known and unknown SOPs, which is subsequently

demonstrated with simulation results. Section 2.4 presents experimental results conducted

on a UAV performing radio SLAM without GNSS signals.
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2.1 Model Description

This section presents the dynamics model for a UAV-mounted receiver and a terrestrial SOP

tower, the modified clock error states, and the EKF model. Only the UAV’s two-dimensional

(2–D) position is considered, as an altimeter or barometric pressure sensor can be used to

estimate the UAV’s altitude.

2.1.1 Receiver Dynamics Model

The UAV-mounted receiver states consist of the 2-D positions rr = [xr, yr]
T, 2-D velocities

ṙr = [ẋr, ẏr]
T, and clock error states xclk,r = [cδtr, c ˙δtr]

T where δtr(k) and ˙δtr(k) are the

receiver’s clock bias and drift, respectively, and c is the speed of light. The receiver’s position

and velocity states are assumed to adhere to a velocity random walk model [121]. Therefore,

the UAV-mounted receiver can be modeled as the following discrete-time model

xr (k + 1) = Fr xr(k) +wr(k), k = 0, 1, 2, ...,

where

xr = [rT
r , ṙT

r , xT
clk,r]

T,

Fr =


I2×2 T I2×2 02×2

02×2 I2×2 02×2

02×2 02×2 Fclk

 , Fclk =

1 T

0 1

 ,

10



where wr is the receiver’s process noise, which is modeled as a discrete-time zero-mean white

noise sequence with covariance Qr = diag[Qpv, Qclk,r], with

Qpv =



q̃x
T 3

3
0 q̃x

T 2

2
0

0 q̃y
T 3

3
0 q̃y

T 2

2

q̃x
T 2

2
0 q̃xT 0

0 q̃y
T 2

2
0 q̃yT


, Qclk,r = c2

Sw̃δtr
T + Sw̃ ˙δtr

T 3

3
Sw̃ ˙δtr

T 2

2

Sw̃ ˙δtr

T 2

2
Sw̃ ˙δtr

T

 ,

where T is the sampling time and q̃x and q̃y are the continuous-time x and y acceleration noise

power spectral densities. The terms Sw̃δtr
and Sw̃ ˙δtr

are the clock bias and drift process noise

power spectra, which can be related to the power-law coefficients,
{
hα,si

}2

α=−2
. Laboratory

experiments have shown that the power spectral density of the fractional frequency deviation

of an oscillator from nominal frequency to be appropriately approximated by Sw̃δtr
≈ h0,r

2

and Sw̃ ˙δtr
≈ 2π2h−2,r [122].

2.1.2 SOP Dynamics Model

Each SOP is assumed to emanate from a spatially-stationary terrestrial transmitter. The

states will consist of 2-D positions rsi = [xsi , ysi ]
T and clock error states xclk,si = [cδtsi , c

˙δtsi ]
T,

where δtsi(k) and ˙δtsi(k) are the ith SOP’s clock bias and drift, respectively, with i =

1, . . . ,M , where M ≜ n +m is the total number of SOPs in the environment with n being

the number of partially known SOPs and m being the number of unknown SOPs. The ith

terrestrial SOP’s discretized state-space model can be described by

xsi (k + 1) = Fs xsi(k) +wsi(k), k = 0, 1, 2, ...,

11



where

xsi = [rT
si
, xT

clk,si
]T,

Fs = diag[I2×2,Fclk],

where wsi is the ith terrestrial SOP’s process noise, modeled as a discrete-time zero-mean

white noise sequence with covariance Qsi = diag[02×2, Qclk,si ]. The Qclk,si covariance matrix

is identical toQclk,r, except that Sw̃δtr
and Sw̃δ̇tr

are replaced with SOP-specific spectra Sw̃δt,s,i

and Sw̃δ̇t,s,i
. These spectra terms are modeled similarly to the receiver spectra but with SOP-

specific values h0,si and h−2,si .

2.1.3 Modified Clock Error States

Estimating the individual clock error terms for the receiver and each respective SOP could

yield a stochastically unobservable system with diverging estimation error variances [84].

Thus, the modified clock bias and clock drift states are redefined to be the difference between

the receiver’s and SOPs’ clock error terms, according to

cδti ≜ cδtr − cδtsi , i = 1, . . . ,M.

c ˙δti ≜ c ˙δtr − c ˙δtsi .

Now, the clock states are given as xclk,i ≜
[
cδti, cδ̇ti

]T
, where the SOP state vector is

redefined as xsi =
[
rT
si
, xT

clk,i

]T
. The new clock dynamics are given by

xclk,i(k + 1) = Fclkxclk,i(k) +wclk,i(k), k = 0, 1, 2, . . . ,

where wclk,i is the modified clock error state’s process noise, which is modeled as a discrete-

time zero-mean white noise sequence with covariance Qclk,i = Qclk,r +Qclk,si .

12



2.1.4 EKF Model

The EKF estimates the UAV-mounted receiver’s position and velocity, n SOP tower’s mod-

ified clock error states, and m SOP tower’s position and modified clock error states, namely

x ≜ [rT
r , ṙT

r , xT
clk,1, . . . ,x

T
clk,n, xT

sn+1
, . . . , xT

sM
]T.

Note that x may be expressed as x = Tx′, where x′ is the non-modified EKF state vector

and T is some permutation matrix which can be readily calculated for state transformation.

The pseudorange observations made by the receiver on the ith SOP tower is related to the

receiver’s and SOPs’ states by

zsi(k) =
∥∥rr(k)− rsi

∥∥
2
+ cδti(k)︸ ︷︷ ︸

hi[x(k)]

+vsi(k), i = 1, . . . ,M, (2.1)

where ∥ · ∥2 is the Euclidean norm and vsi is the measurement noise, which is modeled as a

zero-mean white Gaussian sequence with variance σ2
si
. It is assumed that the measurement

noise is uncorrelated across the different SOPs.

2.2 Base Case Observability Analysis

This section shows that the radio SLAM base case, defined as a UAV with imperfect knowl-

edge of its initial states in an environment with n = 2 partially known (mapped) and m = 1

unknown SOP towers, to guarantee observability. Moreover, this analysis shows the mini-

mum number of SOP towers needed to guarantee observability in an arbitrary environment.

This is achieved by studying the rank of the l-step observability matrix. The following as-

sumptions are necessary to ensure the l-step observability matrix does not lose rank due to

receiver trajectory or singular geometry.

13



A1. The terrestrial SOPs are not colocated

A2. The receiver is not stationary and does not move along a trajectory collinear to any

terrestrial SOP line-of-sight vectors.

A3. The receiver’s distance to each SOP is bounded at all time, i.e., dmin < ∥rr(k)−rsi∥2 <

dmax, ∀ k > 0, and ∀ i = 1, · · · ,M , where dmin is the minimum distance to the SOP

(to ensure the UAV does not “exactly” fly over the SOP) and dmax is the maximum

distance to the SOP (to ensure the UAV does not fly very far from the SOPs, making

their geometry in the “far-field,” which appears as if they are collocated).

2.2.1 Theoretical Background: Observability of Linear and Non-

linear Systems

Consider the discrete-time linear time-varying (LTV) system

x(k + 1) = F(k)x(k) + Γ(k)u(k) (2.2)

y(k) = H(k)x(k)

where x ∈ Rnx is the system’s state vector, u ∈ Rnu is the system’s input vector, and

y ∈ Rny is the system’s measurement vector. The observability of a LTV system is typically

determined by studying the rank of the observability Grammian or the observability matrix.

The following theorem states a necessary and sufficient condition for LTV observability

through the l-step observability matrix [123].

Theorem III.1: The discrete-time LTV system is l-step observable if and only if the l-step

14



observability matrix, defined as

O(k, k + l) ≜



H(k)

H(k + 1)Φ(k + 1, k)

H(k + 2)Φ(k + 2, k)

...

H(k + l − 1)Φ(k + l − 1, k)


(2.3)

is full rank, i.e., rank
[
O(k, k + l)

]
= nx. The matrix function Φ(k, j) is the discrete-time

transition matrix, which is defined as

Φ(k, j) ≜


F(k − 1)F(k − 2) · · ·F(j), k ≥ j + 1

I, k = j

This observability analysis can be extended to nonlinear systems by linearizing the state

transition and observation models to obtain F(k), Γ(k), and H(k), which establishes observ-

ability results only valid locally. More generally, a nonlinear system may be characterized

as observable, locally observable, weakly observable, or locally weakly observable [124].

2.2.2 Observability Analysis Results

This analysis looks to classify observability for a discrete-time LTV system by studying the

rank of the l-step observability matrix. The state vector and dynamics matrix for the base

case is defined as

x ≜ [rT
r , ṙT

r , xT
clk,1, xT

clk,2, xT
s3
]T, (2.4)
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F =



I2×2 T I2×2 02×2 02×2 02×4

02×2 I2×2 02×2 02×2 02×4

02×2 02×2 Fclk 02×2 02×4

02×2 02×2 02×2 Fclk 02×4

04×2 04×2 04×2 04×2 Fs3


. (2.5)

The linearized measurement model yields the following observation Jacobian matrix

ξi(k) ≜
rr(k)− rsi

∥rr(k)− rsi∥2
, ∀i = 1, 2, 3

Hri(k) = [ξTi (k), 01×2], Hsi(k) = [−ξTi (k), hclk]
T, hclk = [1, 0],

H(k) =


Hr1(k) hclk 01×2 01×4

Hr2(k) 01×2 hclk 01×4

Hr3(k) 01×2 01×2 Hs3(k)

 . (2.6)

The l-step observability matrix O(k, k + l) is of dimension l · (n +m)× 4 + 2n + 4m. One

necessary condition for the observability matrix to be full rank is that l·(n+m) ≥ 4+2n+4m,

i.e., the UAV makes observations at l epochs to the M terrestrial SOP towers. Symbolic

computations done in software found the l-step observability matrix to achieve full rank when

l ≥ 4 for the radio SLAM base case. Further generalized, a given system will always be l-

step observable with n ≥ 2 and m ≥ 1 for l ≥ 4. Note, this result is the same as the l-step

criteria found in the observability analysis for a UAV performing opportunistic navigation

[30]. The results of this study are valid only locally and deterministically, i.e., no process

or measurement noise and no initial uncertainty. However, these result can be extended to

stochastic systems by introducing noise to the position unit vectors ξ′i(k) = ξi(k) +wξi(k).

By invoking the stated assumptions A1 - A3, the addition of process noise will not change

the structure nor the rank of H(k). Thus, the deterministic observability analysis still holds

for a system with noise [125].
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2.3 Radio SLAM Performance Analysis

This section derives a lower bound for the radio SLAM performance as a function of time

and partially known and unknown SOP towers in the environment. The m unknown SOPs

means that one has no knowledge of the location or clock error states. The n partially known

SOPs means that one has knowledge of the location but the clock error states are unknown.

The radio SLAM performance bound yields a lower bound on the uncertainty with which

a UAV can localize itself and map the environment while estimating the clock error terms

over a finite-time horizon. The following assumptions are necessary to ensure that uniform

controllability and observabililty conditions are satisfied simultaneously.

A4. The environment contains a UAV-mounted receiver with imperfect knowledge of its

initial states with n ≥ 2 partially known SOP towers and m ≥ 1 unknown SOP

towers, i.e., the necessary observability condition l ≥ 4+2n+4m
n+m

is satisfied.

A5. The m ≥ 1 unknown SOP spatial states’ process noise terms contain a small non-zero

value (ϵ ≪ 1) to ensure the process covariance is positive-definite.

2.3.1 Motivating Scenario

The following motivating scenario is considered. A UAV-mounted receiver is flying in a

environment with initial access to GNSS signals from which an imperfect initial state esti-

mate is calculated. GNSS signals became unavailable. Subsequently, the receiver produces

pseudorange observations from ambient terrestrial SOPs. The pseudorange observations are

fused through an EKF to estimate the states of both the (partially known and unknown)

SOPs and UAV.
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2.3.2 Boundedness of EKF Estimation Error Covariance

A uniform lower bound on the state covariance for a LTV stochastic system is valid when

both uniform controllability and observability are satisfied simultaneously [92, 126]. Put

another way, both the controllability and observability Grammians must be full rank (e.g.,

positive definite). These EKF estimation error covariance bounds have the following form

(
Ok,k−l + C−1

k,k−l

)−1 ⪯ Pk, (2.7)

where

Ck,k−l =
k−1∑
i=k−l

Φ(k, i+ 1)QΦ(k, i+ 1)T, (2.8)

Ok,k−l =
k−1∑
i=k−l

Φ(i, k)TH(i)TR̄−1H(i)Φ(i, k), (2.9)

are the controllability Grammian (2.8) and observability Grammian (2.9), respectively. To

simplify the upcoming derivation, the measurement noise covariance is assumed to be R̄ ≜

σ2IM×M , where σ2 ≜ max{σ2
s1
, . . . , σ2

sM
}.

2.3.3 Lower Bound on the EKF Estimation Error Covariance

The controllability and observability Grammians will be constructed at l = 4 epochs to the

M terrestrial SOP towers based on the observability analysis in Section III. The Grammians

matrices were computed to be

Ck,k−4 =
k−1∑

i=k−4

Φ(k, i+ 1)QΦ(k, i+ 1)T =
4∑

i=1

Fi−1Q
(
Fi−1

)T
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Ok,k−4 =
1

σ2

k−1∑
i=k−4

Φ(i, k)TH(i)TH(i)Φ(i, k) =
1

σ2

4∑
i=1

(
F−i

)T
H(k − i)TH(k − i)F−i

The controllability Grammian is constructed with linear-time invariant (LTI) matrices Q

and F. Thus, the controllability Grammian Ck,k−4 is a constant matrix which is a function

of the covariance Q. The observability Grammian matrix is constructed with LTI matrix

F and LTV matrix H(k)TH(k). Thus, the observabililty Grammian is a function of the

observation Jacobian H(k)TH(k). Therefore, the EKF estimation error bound defined in

(2.7) is dependent on finding a real number ᾱ > 0 such that Ok,k−4 ⪯ ᾱI. The ᾱ constant

can be defined as the trace of the observability Grammian. A tighter upper-bound on

the observability Grammian can be established by finding the maximum eigenvalue, but

this is a difficult task since the observability Grammian is a LTV matrix. Therefore, the

“looser” upper-bound is considered by defining ᾱ to be the trace, rather than the maximum

eigenvalue, of the observability Grammian. The trace is defined as the sum of all eigenvalues,

i.e., Tr[Ok,k−4] =
∑nx

j=1 λj where nx is the number of estimated states. Alternatively, the

trace is defined to be the sum of the elements along the main diagonal of a matrix.

Ok,k−4 ⪯ Tr(Ok,k−4)︸ ︷︷ ︸
ᾱ

I, where Tr(Ok,k−4) =
1

σ2

nx∑
i=1

[Ok,k−4]i,i (2.10)

(ᾱI+ C−1
k,k−4) ⪰ (Ok,k−4 + C−1

k,k−4)

⇒ (ᾱI+ C−1
k,k−4)

−1 ⪯ (Ok,k−4 + C−1
k,k−4)

−1 ⪯ Pk (2.11)

Furthermore, the observability Grammian’s trace, i.e., ᾱ = Tr(Ok,k−4), is calculated for

the radio SLAM base case with l ≥ 4+2n+4m
n+m

= 4+2(2)+4(1)
3

= 4. The considered scenario

makes pseudorange observations at l = 4 epochs to the M = 3 terrestrial SOP towers in the

environment. Defining matrix Bi = H(k − i)F−i,

Tr(Ok,k−4) =
1

σ2

4∑
i=1

Tr(BT
i Bi) =

1

σ2

4∑
i=1

nx∑
j=1

||bj||22 (2.12)
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where bj ∀j = 1, . . . , nx are the columns of matrix Bi. The dynamics matrix has a Jordan

form. Thus, it can be written as the summation of an identity matrix and an upper triangle

hollow matrix which is only a function of the clock sampling time T , i.e, F = I+FT . It can

be shown that FT is a nilpotent matrix such that Fi
T = 0, for i ≥ 2. Therefore, the inverse

of the dynamic propagation matrix can be calculated as F−1 = I− FT . Similarly, it can be

shown that F±i = I ± iFT . These dynamics matrix properties are useful in characterizing

the trace of the observability Grammian, as discussed in the following

Bi = H(k − i)F−i

= H(k − i)− iH(k − i)FT

=


ξT1 (k − i) −iTξT1 (k − i) [1,−iT ] 01×2 01×2 01×2

ξT2 (k − i) −iTξT2 (k − i) 01×2 [1,−iT ] 01×2 01×2

ξT3 (k − i) −iTξT3 (k − i) 01×2 01×2 −ξT3 (k − i) [1,−iT ]

 ,

⇒ Tr(BT
i Bi) =

nx∑
j=1

||bj||22 = (1 + i2T 2)
M∑
j=1

(1 + ||ξj||22) + ||ξ3||22

The above results can be generalized for M SOP towers where m of them are unknown and

n of them are partially known. It should be noted that ||ξj||2 = 1 for each SOP tower; as it

is defined as the normalized distance between the receiver and each SOP tower. This result

can be generalized to the following with m unknown SOPs and n partially known SOPs

Tr(BT
i Bi) =

nx∑
j=1

||bj||22 = (1 + i2T 2)
M∑
j=1

(1 + ||ξj||22) +
m∑
j=1

||ξj||22 = 2M(1 + i2T 2) +m
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Finally, the trace of the observability Grammian for the l epochs that have been taken into

account can be calculated.

Tr(Ok,k−l) =
1

σ2

l∑
i=1

Tr(BT
i Bi)

=
l

σ2

[
(2M +m) +MT 2 (l + 1)(2l + 1)

3

]
≜ ᾱ(n,m, σ2, T, l) (2.13)

The constant value ᾱ calculated in (2.13) upper-bounds the observability Grammian where ᾱ

is a function of sampling time, partially known and unknown SOP towers, measurement noise,

and l-step. Now, the ᾱ constant is used to construct the linear time-invariant estimation

error covariance with minimal uncertainty based on (2.11).

PLB =
(
ᾱI+C−1

k,k−l

)−1

This uniform lower bound on Pk is valid with assumptions A1−A5 to simultaneously guaran-

tee the necessary uniform controllability and uniform observability conditions for estimation

error covariance matrix boundedness.

2.3.4 Simulation Results

This subsection presents simulation results demonstrating the derived theoretical lower

bound for the radio SLAM base case. The UAV is flying at a fixed altitude with veloc-

ity random walk dynamics. During the flight, the UAV will draw and fuse pseudorange

observations obtained from M = 3 SOP towers detected within a local neighborhood of the

UAV. The simulation settings are summarized in Table 2.1.
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Table 2.1: Radio SLAM Simulation Settings for the Receiver and each SOP

Parameter Value

{n,m} {2, 1}

xr(0|0) [0, 50, 15,−1, 100, 10]T

Pr(0|0) diag[25, 25, 9, 9, 30× 103, 3× 103]

x̂r(0|0) ∼ N [xr(0|0),Pr(0|0)]

rsi(0) ∼ [U [−100, 1000], U [−300, 300]]T

{xsi(0)}
3
i=1

[
rT
si
, 1, 0.1

]T
Ps(0|0) (103) · diag[1, 1, 30, 3]

{x̂si(0|0)}
3
i=1 ∼ N [xsi(0),Ps(0|0)]

{Pclk,i(0|0)}3i=1 (103) · diag[30, 3]

{h0,r, h−2,r} {9.4× 10−20, 3.8× 10−21}

{h0,si , h−2,si}
3
i=1 {8.0× 10−20, 4.0× 10−23}

q̃x, q̃y 0.1 m2/s3{
σ2
si

}3

i=1
25 m2

T 0.1 s

First, results highlighting the uniform estimation performance as a function of unknown

SOPs are shown in Fig. 2.1. To ensure observability, n = 2 partially known SOPs are

assumed to be known while them unknown SOPs are varied from 1 to 50 in increments of two.

The performance metric used is the A-optimality criteria, which is proportional to the average

variance of the estimates [127], given by the trace of the estimation error covariance. It is

important to note how the average variance increases as more unknown SOPs are included

into the environment. Knowledge of this performance plot can motivate performance-based

design or transmitter selection when there is uncertainty about the environment.
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Figure 2.1: Uniform estimation performance as a function of unknown SOPs using the A-
optimality criteria, i.e., Tr[PLB].

Next, Monte Carlo (MC) simulations with 103 realizations were conducted to demonstrate the

uniform lower bound on the EKF estimation error covariance. The process and measurement

noise, initial state estimates, and the SOP tower locations were randomized for each MC

realization. Fig. 2.2(a) displays the 1σ bounds of P(k|k) for the UAV and unknown SOP

compared to the derived uniform lower bound. Fig. 2.2(b) displays an eigenvalue point cloud

verifying P (k|k) ⪰ PLB. It can be seen that, the minimum eigenvalue of the covariance’s

difference, i.e., λmin[P(k|k)−PLB] will always be greater than or equal to zero at each time

step for every MC realization.
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(a) 1σ bounds for localized UAV and unknown SOP

(b) Minimum eigenvalue point-cloud

≈ 7:5 · 10
−4

UAV Unknown SOP

Figure 2.2: Simulation results for 103 MC realizations. (a) 1σ bounds for the EKF estimation
error covariance matrix compared with theoretical lower bound. (b) Minimum eigenvalue
point cloud verifying P (k|k) ⪰ PLB.

2.4 Experimental Results

A UAV field experiment was conducted in Mission Viejo, CA, USA, to demonstrate the

estimation error trajectories and performance for the radio SLAM base case. This section

presents the experimental hardware and software setup as well as the radio SLAM results

using only pseudorange observations from M = 3 SOP towers in the environment.
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2.4.1 Hardware and Software Setup

The hardware setup for the conducted experiment is shown in Fig. 2.3. A DJI Matrice

600 drone was equipped with a National Instrument (NI) universal software radio peripheral

(USRP)-2955 to sample cellular long-term evolution (LTE) signals at four different carrier

frequencies. LTE carrier frequencies 1955, 2145, 2125, and 739 MHz were used for this

experiment which are allocated to USA operators AT&T, T-Mobile, and Verizon. The

sampling rate was set to 10 MSps and the sampled LTE signals were recorded on a laptop.

A Septentrio AsteRx-i V was used to estimate the position and orientation of the drone which

was used as the ground truth. Furthermore, the Spetentrio was equipped with a dual antenna

multi-frequency GNSS receiver with RTK and a Vectornav VN-100 micro electromechanical

systems (MEMS) inertial measurement unit (IMU).

LTE antennas

Laptop

USRP

Multi-frequency
AsteRx-i V GNSS antennas AsteRx-i V GNSS

receiver with IMUBattery

DJI Matrice 600

MATLAB-based
Filter

MATRIX
LabVIEW-based SDR

receiver with IMU

Figure 2.3: Experiment hardware setup.

The terrestrial SOP towers’ cell IDs and their corresponding carrier frequencies are presented

in Table 2.2. The sampled LTE signals were processed offline using the LTE software-defined

radio (SDR) proposed in [128]. The resulting observations were used to simultaneously
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localize the UAV-mounted receiver and unknown SOP tower while estimating all unknown

clock error terms via the radio SLAM framework.

Table 2.2: eNodeBs’ characteristics

Cell ID Carrier frequency (MHz)

78 2145

104, 352 1955

308, 358, 224, 58, 354 2125

492, 5, 27 739

The UAV’s and SOP towers’ heights were assumed to be known for the entire duration of the

experiment. Therefore, this is a 2-D radio SLAM problem consistent with the observability

analysis and performance analysis conducted in Section III and Section IV, respectively.

The EKF-based radio SLAM filter was initialized with state estimates and corresponding

estimation error covariance given by the following

x̂(0|0) =[0, 0, 3.42, 0.81, −539.32, 0.16, −2237.52, 0.55, −150.71, 91.32, . . .

− 143.11, 0.07]T

Pr(0|0) =diag
[
4, 4, 1, 1, 30× 106, 3× 103

]
,

Pclk,n(0|0) =diag
[
30× 106, 3× 103

]
, n = 1, 2

Ps3(0|0) =diag
[
7× 104, 7× 104, 30× 106, 3× 103

]
where P(0|0) was initialized with the initial EKF estimation error covariance matrices listed

above. The initial modified clock error terms were solved for by using the initial set of
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cellular transmitter pseudoranges according to

cδti(0) = zsi(0)− ∥rr(0)− rsi∥2, i = 1, 2, 3

c ˙δti(0) =
c
(
δti(1)− δti(0)

)
T

,

where δti(1) = zsi(1) − ∥rr(1) − rsi∥2 is the modified clock bias at time step k = 1. The

receiver’s clock covarianceQclk,r was set to correspond to a typical temperature-compensated

crystal oscillator (TCXO) with h0,r = 9.4 × 10−20 and h−2,r = 3.8 × 10−21. The ith SOP

tower’s clock covariance Qclk,si was set to correspond to a typical oven-controlled crystal

oscillator (OCXO) with h0,si = 8× 10−20 and h−2,si = 4× 10−23, which is typical for cellular

towers [129, 130]. The UAV’s position and velocity states were assumed to evolve according

to velocity random walk dynamics where T = 0.01 s is the sampling time and q̃x = 1 m2/s3

and q̃y = 20 m2/s3 is the x and y continuous-time acceleration noise spectra whose values

were found empirically. The measurement noise was assumed to have a covariance R =

σ2 · I3×3, where σ2 = 30 m2 was found empirically.

2.4.2 Radio SLAM Base Case Results

The UAV traversed a trajectory of 600 m over 175 seconds, while listening to 11 terrestrial

SOP towers in the surrounding environment which were mapped prior to conducting the

experiment. Although, for the purposes of the radio SLAM case study, only M = 3 SOP

towers were considered with n = 2 partially known SOPs and m = 1 unknown SOP. The

UAV-mounted receiver’s estimate errors were computed with respect to the RTK-IMU tra-

jectory where the resulting estimation error trajectories and corresponding ±1σ of the UAV’s

and the unknown SOP tower’s states are shown in Fig. 2.4. Note, only the ±1σ bounds are

shown to highlight the radio SLAM base case estimation performance.
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Estimation Error ±1σ

Figure 2.4: Radio SLAM base case experimental results showing the estimation error tra-
jectories and corresponding ±1σ bounds.

The experiment layout contains three cellular SOP tower locations and the true and esti-

mated UAV trajectories as shown in Fig. 2.5(a). A comparison between the estimated UAV

trajectory and the RTK-IMU solution trajectory is shown in Fig. 2.5(b). The UAV achieved

a position root-mean squared error (RMSE) of 10.76 m after traversing the full trajectory.

The north-east 95th-percentile initial and final uncertainty ellipses corresponding to SOP

tower 3 have a noticeable reduction in size by the end of the experiment. Moreover, the

initial 2-D SOP tower position error was 41.57 m, but was eventually reduced to a final 2-D

SOP tower position error of 6.62 m, as shown in Fig. 2.5(c). Furthermore, it should be noted

that the radio SLAM error trajectories and performance results were all consistent with the

theory and simulation results presented in Section IV.
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Tower Location
Final Estimated

Tower Location
True

True Tower Locations

0 km 1 km

SOP 1

SOP 3

SOP 2

(c)

Initial Tower
Uncertainty

Final Tower
Uncertainty

(b) Position RMSE: 10.76 m
Total Traversed Trajectory: 600 m

SOP Final Error: 6.62 m

SOP Initial Error: 41.57 m

(a)

RTK-IMU Solution
Radio SLAM

Figure 2.5: (a) Experiment layout containing the true locations of each SOP tower and
the two UAV navigation solutions. (b) UAV trajectory comparison between the RTK-IMU
navigation solution (red) and radio SLAM (blue). (c) Initial and final position estimates
with their associated north-east uncertainty ellipse for SOP tower 3. Map data: Google
Earth.
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Chapter 3

Efficient Transmitter Selection

Strategies for Improved Information

Gathering with Terrestrial SOPs

Next, this chapter will present sub-optimal, yet computationally efficient, transmitter selec-

tion strategies for improved information gathering using the radio navigation, rather than

the radio SLAM, framework. Furthermore, a performance analysis on the proposed trans-

mitter selection strategies is conducted. This chapter is organized as follows. Section 3.1

describes the models employed and the problem description. Section 3.2 describes the pro-

posed terrestrial SOP selection framework. Section 3.3 provides a comparison analysis of

the different selection strategies for the one-dimensional (1–D) and two-dimensional (2–D)

FIM cases and derives an upper bound on the FIM for the selected range-only observations.

Section 3.4 presents simulation results comparing the performance of the different selection

schemes, the effect of timing on the optimal transmitter selection, and computational com-

plexity of the different selection strategies. Section 3.5 presents experimental results for a

U.S. Air Force high altitude aircraft using the proposed selection frameworks in two different

30



emulated GNSS-denied environments over a valid selection region: (i) rural region and (ii)

semi-urban region.

3.1 Model Description and Problem Description

In this section, the models adopted in this chapter are described and the transmitter selection

problem is subsequently described.

3.1.1 Overview: Aerial Vehicle Model for SOP-Based Navigation

Consider an aerial vehicle equipped with an onboard receiver capable of listening to the

ambient terrestrial SOPs (i.e., transmitters) in the environment.

These terrestrial SOPs are assumed to be spatially-stationary, and each SOP’s state vector

will consist of its three-dimensional (3–D) position vector rsi = [xsi , ysi , zsi ]
T and the differ-

ence between the receiver’s and SOP’s clock error states xclk,i = c
[
δti, δṫi

]T
, where c is the

speed of light, δti is the relative clock bias, and δṫi is the relative clock drift. Furthermore,

the receiver’s state vector will consist of the 3–D position vector and 3–D velocity vector

given by rr = [xr, yr, zr]
T and ṙr = [ẋr, ẏr, żr]

T, respectively.

The state vector will include the receiver’s position, receiver’s velocity, and each SOP tower’s

relative clock error states, defined as

x ≜
[
rT
r , ṙT

r , xT
clk,1, . . . , xT

clk,M

]T
.

The pseudorange observation made by the receiver to each SOP tower, after discretization
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and mild approximations [82], is modeled as follows

zsi(k) =
∥∥rr(k)− rsi

∥∥
2
+ cδti(k)︸ ︷︷ ︸

hi[x(k)]

+vsi(k), (3.1)

whereM is the total number of SOPs in the environment and vsi is the i
th SOP’s measurement

noise which is modeled as a zero-mean white Gaussian sequence with variance σ2
si
. Moreover,

it is assumed that the measurement noise is independent across all the different terrestrial

SOP towers.

For high altitudes, there is poor geometric diversity of terrestrial SOPs in the vertical direc-

tion. Therefore, allowing the aerial vehicle to rely exclusively on SOPs for 3–D navigation

would lead to a large vertical dilution of precision (VDOP) [131, 132, 133]. Hence, it is

assumed that the aerial vehicle is equipped with an altimeter to determine its altitude. As

such, in what follows, the problem formulation will only consider the planar aerial vehicle

states.

3.1.2 Fisher Information Matrix

The proposed transmitter selection strategies desire to choose the most informative observa-

tions. This motivates the adoption of the Fisher Information Matrix (FIM) [134, 135] which

is given as

I(x) = E

[(
∂ln p(z|x)

∂x

)(
∂ln p(z|x)

∂x

)T
]

= I0(x) +
M∑
i=1

1

σ2
si

(
∂hi(x)

∂x

)(
∂hi(x)

∂x

)T

, (3.2)

= I0(x) +
M∑
i=1

Ii(x)

32



where p(z|x) is the likelihood function of the observations z parameterized by the states

x. Furthermore, the FIM can be simplified since the observation model in (3.1) is assumed

to have additive Gaussian noise and the observation sequence {zsi}Mi=1 is assumed to be

independent across all SOP towers. These assumptions allow the FIM to simplify into (3.2),

which is represented as the prior FIM plus a summation of the information content associated

with each observation. Note, this is similar to the notion of the information matrix associated

with observations (IMAO) discussed in the robotics literature [136, 137].

The additive property of information from different sources [138] will be utilized in the

transmitter selection strategies. Denoting the (prior) information content associated with a

subset of SOPs as I0(x) and the information associated with the ith SOP as Ii(x), then the

(posterior) information content associated with updating the SOP subset to include the ith

SOP is defined as Iposterior,i(x) = I0(x) + Ii(x).

3.1.3 Static Estimation Framework

The transmitter selection estimation framework is formulated as a static system (i.e., no

dynamics) with range-only observations. Note, the forthcoming simulation results will justify

why using range-only observations, rather than psuedorange observations, is valid.

A static, weighted nonlinear least-squares (WNLS) estimator is employed on a redefined

state vector x′ and observation model z′
si
. Moreover, this batch estimation formulation will

minimize a cost function subject to a constraint on the number of selected transmitters. The

(static) states considered for estimation are the receiver’s position states, defined as

x′ ≜ rr.

The observation model is then redefined for range-only, rather than pseudorange, observa-
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tions expressed as

z′si = ∥rr − rsi∥2 + v′si ,

where v = [v′s1 , . . . , v′sM ]T is the measurement noise vector and v′si is assumed to be a

zero-mean white Gaussian sequence with variance σ2
s′i
. As before, the measurement noise is

assumed independent across all different terrestrial SOP towers.

The associated Jacobian matrix H of the (redefined) observation vector z′ ≜ [z′s1 , . . . , z
′
sM

]T

is given by

H =
rT
r − rT

si

∥rr − rsi∥2
(3.3)

Subsequently, the estimation error covariance matrix of the WNLS estimator with M trans-

mitters (terrestrial SOPs), denoted by P, is given by

P ≜
[
P−1

0 +HTR−1H
]−1

, (3.4)

where a prior for x′ may be given, denoted by x̂′, with an associated initial covariance

P0(≜ I−1
0 ) ≻ 0, H is the Jacobian matrix of the (redefined) observation model, and R =

diag[σ2
s′1
, . . . , σ2

s′M
] is the measurement covariance associated with the observations.

3.1.4 Problem Description

The problem addressed in this chapter is the sub-optimal, yet computationally efficient,

selection of a transmitter subset. Furthermore, it is assumed this selection subset will remain

valid over a segment of the aerial vehicle’s current trajectory. Now, consider the following

transmitter selection motivating problem scenario.
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SOP M

SOP 2

SOP 1

Aerial Vehicle

Uplink Station

SOP Map Data

Jammer

GNSS

Signal Cutoff

Figure 3.1: Problem description. An aerial vehicle is navigating in an unknown environment
by exploiting the available GNSS signals. During its flight, the aerial vehicle experiences a
GNSS outage (e.g., spoofing or jamming) which causes the available GNSS signals to become
unreliable. Luckily, a nearby uplink station is able to send SOP map data to the aerial vehicle
containing an exhaustive list of the available cellular tower locations in the area.

In Figure 3.1, an aerial vehicle is navigating in an unknown environment by exploiting the

available GNSS signals. During its flight, the aerial vehicle experiences a GNSS outage (e.g.,

spoofing or jamming) which causes the available GNSS signals to become unreliable. Fortu-

nately, a nearby uplink station is able to provide SOP map data containing an exhaustive

list of the available cellular tower locations in the area. Now, the aerial vehicle is tasked

to navigate by utilizing signals from the ambient terrestrial SOPs with known transmitter

locations, but unknown clock error states, exclusively.

The aerial vehicle is assumed to be equipped with an onboard receiver capable of extracting

pseudorange observations, modeled as (3.1), from the abundant number of ambient SOPs’

signals. The aerial vehicle, then, fuses these observations through a dynamic estimator

(e.g., EKF) but, due to size, weight, power, and cost (SWaP-C) limitations, or fusing all

these signals is unnecessary since tracking a subset of the SOPs could yield a comparable

performance, the aerial vehicle-mounted receiver is constrained to using a subset (K < M)

of the total number of terrestrial SOPs in the environment. This prompts the question of
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what is the “best” SOP subset to use? Fig. 3.2 illustrates a real-world environment in which

this selection problem was encountered in Southern California, USA, where the white pins

denote M = 57 cellular SOPs, which the aerial vehicle-mounted receiver was simultaneously

tracking before it selected a SOP subset at the selection point (black cross).

Selection Point

Transmitters

Figure 3.2: Motivating scenario. Terrestrial SOP towers (white) in the environment with
respect to the aerial vehicle’s selection point (black cross). Using all 57 SOP towers to
navigate the aerial vehicle would violate SWaP-C constraints. As such, it is desired to
choose the “best” subset of SOPs to use to navigate the aerial vehicle.

The transmitter selection problem can be cast as the following optimization problem

minimize
w

J (w)

subject to 1T
Mw = K

wi ∈ {0, 1}, i = 1, . . . ,M

where J (w) denotes a desired cost function (e.g., A-optimality, D-optimality, E-optimality,
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GDOP, ect.) [127, 139], wi is a binary decision variable (determines whether to accept or

reject the ith observation), w = [w1, . . . , wM ]T is a vector of the binary decision variables,

1M is a vector with M one entries, and K is the cardinality of the selection subset. This

optimization problem is computationally involved to solve in real-time due to the integer

constraints. Instead of directly solving the above optimization problem, two transmitter

selection strategies are proposed. These selection strategies are discussed and analyzed in

the forthcoming sections.

3.2 Terrestrial SOP Selection Framework

The proposed framework for transmitter selection is based on choosing the SOP subset that

would minimize the aerial vehicle-mounted receiver’s position error uncertainty, by maxi-

mizing information content. These selection strategies will leverage the additive property

of information from different sources for determining the most informative observations via

the FIM. Moreover, the 2 × 2 FIM corresponding to the ith SOP’s range-only observation

information content Irr,i, is used to evaluate the cost function J [w]. Ergo, this cost function

is defined to be the A-optimality criterion [86]: the trace of the posterior estimation error

covariance (equivalently, the trace of the inverse of the FIM), namely

J [w] ≜ tr
[
I′0 +H′Tdiag(w)H′]−1

= tr

[
I′0 +

M∑
i=1

wiIrr,i

]−1

, (3.5)

where H′ ≜ (R−1
a )TH is the modified Jacobian matrix, Ra is the upper triangular Cholesky

factorized measurement covariance (i.e., R = RT
aRa), and I′0 is defined as the 2 × 2 prior

FIM corresponding to the receiver’s position states. Furthermore, the cost function can

be redefined as the summation of the prior FIM I′0 and the FIM associated with the K
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selected (out of the M total) SOP observations Irr,i (decided by the binary decision variable

wi ∈ {0, 1}) as seen in (3.5).

Additionally if pseudorange observations were considered, rather than range-only observa-

tions, it is worth noting that the equivalent Fisher Information Matrix (EFIM) [140, 141]

could also be employed. The EFIM will consider the information associated with the re-

ceiver’s position states as well as the non-position states (i.e., clock bias states).

Opportunistic Greedy Selection

The opportunistic greedy selection (OGS) strategy, further described in [142], is a recursive

selection strategy which proceeds as follows. First, an exhaustive search is performed to

select the two SOPs which contain the largest information content associated with the re-

ceiver’s position states Irr,i, according to the A-optimality criterion. This exhaustive search

is necessary to ensure that the system is observable before implementing the OGS strategy.

In [143], it was shown that at least two SOPs with known emitter locations are necessary to

guarantee observability. Next, the information associated with each of the remaining SOP

towers’ position states is calculated (i.e., excluding the two already selected), then the one

SOP with the highest information (as evaluated by the A-optimality criterion) is added into

the selection subset. The prior FIM is updated accordingly (i.e., (old) prior FIM plus se-

lected SOP’s FIM). Then, the process of evaluating the information content for each of the

remaining SOPs is repeated (K−2 iterations) until the selection subset contains the desired

number of SOPs. Algorithm 1 details the proposed OGS steps.

One Shot Selection

The one shot selection (OSS) strategy is a batch selection strategy which proceeds as follows.

First, as with the OGS strategy, an exhaustive search is performed to select the two SOPs
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containing the largest information content associated with the receiver’s position states Irr,i,

according to the A-optimality criterion. As before, an exhaustive search is necessary to guar-

antee observability before implementing the OSS strategy. Next, the information associated

with each of the remaining SOP towers’ position states is calculated (i.e., excluding the two

already selected). The K − 2 SOP towers with the highest information (as evaluated by the

A-optimality criterion) is added to the selection subset, and the FIM for selected SOPs is

computed (i.e., prior FIM plus the selected SOPs’ FIM). Note, this selection is performed

in a single iteration to obtain a selection subset containing the desired number of SOPs.

Algorithm 1 details the proposed OSS steps.

Algorithm 1 Transmitter Selection Strategies

Input: Prior FIM, FIM associated with each observation, indicator for each SOP, and
number of selected SOPs
Output: SOP selection subset and FIM for selected SOPs
1: Define an empty set for SOP selection
2: Perform an exhaustive search to select the two SOPs with the largest information content
3: Update the prior FIM and SOP selection subset
Opportunistic Greedy Selection (OGS)
4: for K − 2 iterations
5: Compute the posterior FIM for all SOPs, excluding those already selected
6: Choose one SOP which minimizes the receiver’s average position uncertainty
7: Redefine the prior FIM (i.e., (old) prior FIM plus selected SOP’s FIM) and update SOP
selection subset
8: end for
9: Return the SOP selection subset and FIM for selected SOPs
One Shot Selection (OSS)
4: Compute the posterior FIM for all SOPs, excluding those already selected
5: Choose the K − 2 SOPs which minimize the receiver’s average position uncertainty
6: Compute the FIM for selected SOPs (i.e., prior FIM plus the selected SOPs’ FIM) and
SOP selection subset
7: Return the SOP selection subset and FIM for selected SOPs
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3.3 Transmitter Selection Strategy Analysis

This section will compare the selection subsets for the proposed transmitter selection strate-

gies and provide an upper bound on the FIM for the selected range-only observations.

3.3.1 Terrestrial SOP Selection Subset Comparison: 1–D Case

.

.

.

i-th SOP's Information Content ≡ Irr;i ≥ 0; Irr;i 2 R 8i = 1; : : : ; M

Prior Information Content ≡ I0 > 0; I0 2 R

SOP 4

SOP 2

SOP 3

SOP M

SOP 1

Irr;1 =
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σ
2
s1

ξ1
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σ
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sM

ξM

Irr;2 =
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σ
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ξ2
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σ
2
s4

ξ4

Figure 3.3: A receiver estimating one of its states in an environment comprised of M terres-
trial SOPs.

Consider the ith SOP’s information content Irr,i being represented by a scalar value asso-

ciated with an estimated state, as shown in Figure 3.4. For simplicity, assume the cost

function values from evaluating the posterior FIM Iposterior,i are ranked (prior to selection)

from smallest to largest such that J (Iposterior,1) ≤ J (Iposterior,2) ≤ . . . ≤ J (Iposterior,K) ≤

. . . ≤ J (Iposterior,M) where Iposterior,i = I0 + Irr,i.

Define the empty SOP selection subset as S = ∅. Furthermore, consider an arbitrary prior
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FIM and information associated with the ith SOP are given as follows

I0 = δ0, Irr,i =
1

σ2
si

ξi

where I0 = δ0 > 0 and Irr,i =
1
σ2
si

ξi represents the information content associated with the

ith SOP for the estimated state.

First, both the OSS and OGS strategies will perform an exhaustive search to determine the

two most informative observations, as specified by the A-optimality criteria.

Exhaustive Search,

j∗1 , j
∗
2 = argmin

j1,j2

tr

[
δ0 +

2∑
ℓ=1

ξjℓ
σ2
sjℓ

]−1

,

⇒ j∗1 ≡1, j∗2 ≡ 2,

since J
[
δ0 +

ξ1
σ2
s1

+
ξ2
σ2
s2

]
≤ J

[
δ0 +

ξj1
σ2
sj1

+
ξj2
σ2
sj2

]
, ∀j1, j2 = 1, . . . ,M.

Update the prior information content to I′0 ≜ δ0 +
ξ1
σ2
s1

+ ξ2
σ2
s2

and transmitter selection subset

S = {1, 2}. Now, compute the posterior FIM as

Iposterior,i = δ0 +
∑
j∈S

ξj
σ2
sj︸ ︷︷ ︸

I′0≜γ0>0

+
ξi
σ2
si︸︷︷︸

Irr,i≥0

OSS strategy

The OSS strategy attempts to select the K − 2 most informative observations in a single

iteration (i.e., batch selection) after performing the exhaustive search step.

Single Iteration Selection,
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Select the transmitters which minimize the cost function defined as the average position

uncertainty.

i∗3, . . . , i
∗
K = argmin

i3,...,iK

tr

γ0 +∑
iℓ /∈S

ξiℓ
σ2
siℓ

−1

, ∀iℓ = 1, . . . ,M \ {S}

= argmin
i3,...,iK

1

γ0 +
∑

iℓ /∈S
ξiℓ
σ2
siℓ

⇒ Ii∗3 =
ξ3
σ2
s3

, Ii∗4 =
ξ4
σ2
s4

, . . . , Ii∗K =
ξK
σ2
sK

This optimization problem can invoke the simplifying assumption that Iposterior,i is ranked

from smallest to largest (i.e., J (I′0+ Irr,3) ≤ J (I′0+ Irr,4) ≤ . . . ≤ J (I′0+ Irr,K)). Therefore,

the transmitter selection subset will be defined as S = {1, 2, . . . , K} = {j ∈ N | j =

1, 2, . . . , K}. Furthermore, the information content associated with the selected transmitters

is computed as I = δ0 +
ξ1
σ2
s1

+ . . .+ ξK
σ2
sK

.

OGS strategy

The OGS strategy attempts to select the K − 2 most informative observations in K − 2

iterations (i.e., recursive selection) after performing the exhaustive search step.

Iteration 1,

Recursively select one transmitter which minimizes the cost function defined as the average

position uncertainty.

i∗ = argmin
i

tr

[
γ0 +

ξi
σ2
si

]−1

, ∀i = 1, . . . ,M \ {S}

= argmin
i

1

γ0 +
ξi
σ2
si

⇒ Ii∗ =
ξ3
σ2
s3
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The prior information content can be updated to I′0 = γ0 +
ξ3
σ2
s3

and the selection subset is

updated accordingly S = {1, 2, 3}.

Iterations 2 → K − 2,

Select one transmitter which minimizes the cost function defined as the average position

uncertainty.

i∗ = argmin
i

tr

[
γ0 +

ξ3
σ2
s3

+
ξi
σ2
si

]−1

, ∀i = 1, . . . ,M \ {S}

= argmin
i

1

γ0 +
ξ3
σ2
s3

+ ξi
σ2
si

⇒ Ii∗ =
ξ4
σ2
s4

Continue this recursive selection process at each iteration. By virtue of the simplifying

assumption, the minimum argument will be the next smallest ranked cost function and will be

selected in ascending order as i∗ = 4 (i.e., J (I′0+Irr,4) ≤ J (I′0+Irr,i) ∀i\{S}), i∗ = 5 (i.e.,

J (I′0+ Irr,5) ≤ J (I′0+ Irr,i) ∀i\{S}), . . . , i∗ = K (i.e., J (I′0+ Irr,K) ≤ J (I′0+ Irr,i) ∀i\

{S}). Therefore, the transmitter selection subset will be defined as S = {1, 2, . . . , K} =

{j ∈ N | j = 1, 2, . . . , K}. Furthermore, the information content associated with the selected

transmitters is computed as I = δ0 +
ξ1
σ2
s1

+ . . .+ ξK
σ2
sK

.

Remark: If the information content is scalar valued (i.e., x̂ ∈ R), the selection subset

for the OGS and OSS strategies are equivalent. Moreover, it was found numerically that

the selection subsets associated with the OGS and OSS strategies are equal to the optimal

selection’s subset for the scalar case.
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3.3.2 Terrestrial SOP Selection Subset Comparison: 2–D Case
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Figure 3.4: A receiver estimating its two position states in an environment comprised of M
terrestrial SOPs.

Consider the ith SOP’s information content being represented by the 2 × 2 FIM associated

with the receiver’s position states Irr,i, as shown in Figure 3.4. For simplicity, assume the cost

function values from evaluating the posterior FIM Iposterior,i are ranked (prior to selection)

from smallest to largest such that J (Iposterior,1) ≤ J (Iposterior,2) ≤ . . . ≤ J (Iposterior,K) ≤

. . . ≤ J (Iposterior,M) where Iposterior,i = I0 + Irr .

Define the empty SOP selection subset S = ∅. Furthermore, consider an arbitrary prior

FIM and information associated with the ith SOP are given as follows

I0 =

δ11 δ12

δ12 δ22

 , Irr,i =
1

σ2
si

 α2
i αiβi

αiβi β2
i


where αi =

xr−xsi√
(xr−xsi )

2+(yr−ysi )
2
and βi =

yr−ysi√
(xr−xsi )

2+(yr−ysi )
2
are variables which define the
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position unit vectors (i.e., [αi, βi]
T =

rr−rsi

∥rr−rsi∥2
).

First, both the OSS and OGS strategies will perform an exhaustive search to determine the

two most informative observations, as specified by the A-optimality criteria.

Exhaustive Search,

j∗1 , j
∗
2 = argmin

j1,j2

tr

[
I0 +

2∑
ℓ=1

Irr,jℓ

]−1
 ,

⇒ j∗1 ≡1, j∗2 ≡ 2

since, J [I0 + Irr,1 + Irr,2] ≤ J [I0 + Irr,j1 + Irr,j2 ] , ∀j1, j2 = 1, . . . ,M.

Update the prior information content to I′0 ≜ I0 + I1 + I2 and transmitter selection subset

S = {1, 2}. Now, compute the posterior FIM as

Iposterior,i = I0 + Irr,1 + Irr,2︸ ︷︷ ︸
I′0

+Irr,i, ∀i = 1, . . . ,M \ {S}

=

δ11 δ12

δ12 δ22

+
∑
j∈S

1

σ2
sj

 α2
j αjβj

αjβj β2
j

+
1

σ2
si

 α2
i αiβi

αiβi β2
i


≜

γ11 γ12

γ12 γ22


︸ ︷︷ ︸

I′0≻0

+
1

σ2
si

 α2
i αiβi

αiβi β2
i


︸ ︷︷ ︸

Irr,i⪰0

OSS strategy

The OSS strategy attempts to select the K − 2 most informative observations in a single

iteration (i.e., batch selection) after performing the exhaustive search step.

Single Iteration Selection,

45



Select the transmitters which minimize the cost functional defined as the average position

uncertainty.

i∗3, . . . , i
∗
K = argmin

i3,...,iK

tr
[
I−1
posterior,iℓ

]
, ∀iℓ = 1, . . . ,M \ {S}

= argmin
i3,...,iK

tr


 γ11 +

∑
iℓ /∈S

α2
iℓ

σ2
siℓ

γ12 +
∑

iℓ /∈S
αiℓ

βiℓ

σ2
siℓ

γ12 +
∑

iℓ /∈S
αiℓ

βiℓ

σ2
siℓ

γ22 +
∑

iℓ /∈S
β2
iℓ

σ2
siℓ


−1


= argmin
i3,...,iK

γ11 + γ22 +
∑

iℓ /∈S(
β2
iℓ

σ2
siℓ

+
α2
iℓ

σ2
siℓ

)

(γ11 +
∑

iℓ /∈S
α2
iℓ

σ2
siℓ

)(γ22 +
∑

iℓ /∈S
β2
iℓ

σ2
siℓ

)− (γ12 +
∑

iℓ /∈S
αiℓ

βiℓ

σ2
siℓ

)2

⇒ Ii∗3 = Irr,3, Ii∗4 = Irr,4, . . . , Ii∗K = Irr,K

This optimization problem invokes the simplifying assumption that Iposterior,i is ranked from

smallest to largest (i.e., J (I′0 + Irr,3) ≤ J (I′0 + Irr,4) ≤ . . . ≤ J (I′0 + Irr,K)). Therefore, the

transmitter selection subset will be defined as S = {1, 2, . . . , K} = {j ∈ N | j = 1, 2, . . . , K}.

Furthermore, the information content associated with the selected transmitters is computed

as I = I0 + Irr,1 + Irr,2 + . . .+ Irr,K .

OGS strategy

The OGS strategy attempts to select the K − 2 most informative observations in K − 2

iterations (i.e., recursive selection) after performing the exhaustive search step.

Iteration 1,

Select one transmitter which minimizes the cost function defined as the average position
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uncertainty.

i∗ = argmin
i

tr
[
I−1
posterior,i

]
, ∀i = 1, . . . ,M \ {S}

= argmin
i

tr

 γ11 +
α2
i

σ2
si

γ12 +
αiβi

σ2
si

γ12 +
αiβi

σ2
si

γ22 +
β2
i

σ2
si


−1

= argmin
i

γ11 +
α2
i

σ2
si

+ γ22 +
β2
i

σ2
si

(γ11 +
α2
i

σ2
si

)(γ22 +
β2
i

σ2
si

)− (γ12 +
αiβi

σ2
si

)2

⇒Ii∗ = Irr,3

By invoking the simplifying assumption, J (I′0 + Irr,3) ≤ J (I′0 + Irr,i)) ∀i \ {S}. Therefore,

the prior information content can be updated to I′0 = I0+Irr,1+Irr,2+Irr,3 and the selection

subset is updated accordingly S = {1, 2, 3}. Moreover, γ′
11 = γ11 +

α2
3

σ2
s3

, γ′
12 = γ12 +

α3β3

σ2
s3

,

and γ′
22 = γ22 +

β2
3

σ2
s3

Iterations 2 → K − 2,

Recursively select one transmitter which minimizes the cost function defined as the average

position uncertainty.

i∗ = argmin
i

tr
[
I−1
posterior,i

]
, ∀i = 1, . . . ,M \ {S}

= argmin
i

γ′
11 +

α2
i

σ2
si

+ γ′
22 +

β2
i

σ2
si

(γ′
11 +

α2
i

σ2
si

)(γ′
22 +

β2
i

σ2
si

)− (γ′
12 +

αiβi

σ2
si

)2

In iterations 2 through K − 2, the optimization problem’s solution is heavily dependent on

the cross-terms associated with the ith SOP’s posterior FIM Iposterior,i. Specifically, from the

addition of the updated prior FIM I′0 (i.e., γ′
11, γ

′
22, and γ′

12) plus the information content

associated with the ith SOP’s observation Irr,i, which are coupled in the 2×2 matrix inverse.

In addition, the determinant incorporates the information shared between the xr and yr
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position state estimates of the receiver. Therefore, the simplifying assumption will likely no

longer be valid (i.e., J (I′0 + Irr,3) ≰ J (I′0 + Irr,i)) ∀i \ {S}) and the transmitter selection at

iteration 2 through K − 2 (i.e., for K > 3) should yield a different selection subset than the

OSS strategy.

Remark: If the information content is matrix valued (i.e., x̂ ∈ R2) and K > 3, the SOP

selection subset for OGS and OSS strategies are not likely to be equivalent. Moreover, these

SOP selection subsets will be sub-optimal for the matrix case.

3.3.3 Upper Bound on the Fisher Information Matrix

This section derives an upper bound on the FIM for the selected range-only observations.

Recall, the FIM is defined as the addition of the prior FIM and a summation of the in-

formation content associated with the selected range-only observations. It is assumed the

associated initial estimation error covariance can be an arbitrary positive-definite, symmet-

ric matrix (e.g., P0 = diag [px, py]). Furthermore, the information content associated with

the range-only observations is given by HTR−1H, as shown in (B.2). In what follows, an

upper bound on the FIM, given as the inverse of the estimation error covariance in (3.4), is

developed.

The prior FIM (or, inverse of initial estimation error covariance matrix) and the information

content associated with the range-only observations can be upper bounded by the following

positive-valued scalars

I0 ≜ P−1
0 ⪯ η̄IK×K , (3.6)

HTR−1H ⪯ ϕ̄IK×K , (3.7)

where, η̄ ≡ λmax

[
P−1

0

]
and ϕ̄ ≡ tr[HTR−1H] =

∑K
j=1

1
σ2
sj

. The constants, η̄ and ϕ̄, employ
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an eigendecomposition of their, respective, positive definite, symmetric matrices to establish

an upper bound via the maximum eigenvalue (i.e., λmax), or the trace (i.e.,
∑nx

i=1 λi where

nx is the number of estimated states), of the matrix.

Now, the desired upper bound on the (posterior) FIM can be established by combining the

results of (3.6) and (3.7) together. Recall, the FIM is defined as the sum of the prior FIM

and the information associated with the selected range-only observations.

P−1
0 +HTR−1H ⪯

(
η̄ + ϕ̄

)
IK×K , (3.8)

where η̄ + ϕ̄ =
∑K

j=1
1

σ2
sj

+ λmax

[
P−1

0

]
.

Remark: The upper bound on FIM is directly a function of the initial uncertainty and the

measurement noise. Therefore, this upper bound can vary depending on the magnitude of

these quantities and the number of selected range-only observations.

3.4 Simulation Results

This section presents simulation results to analyze the transmitter selection performance,

effect of timing on the optimal transmitter selection, and the computational cost of the OGS

strategy versus the OSS strategy versus the optimal selection (obtained via an exhaustive

search strategy).

3.4.1 Simulation Settings

The simulated environment assumes that the aerial vehicle had a known vertical position,

which reduces the aerial vehicle’s position state vector to 2–D (planar) rather than 3–D.

Furthermore, the aerial vehicle is assumed to have had initial access to GNSS signals, leading
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to knowledge of its initial states (position and clock bias), after which the aerial vehicle looses

access to GNSS. During the GNSS availability period, the aerial vehicle is tasked to choose

the “best” K < M SOPs to use for navigation once GNSS signals are cut off. The simulation

settings are summarized in Table 3.1.

Table 3.1: Transmitter Selection Environment Simulation Settings

Parameter Value

rr(0) [0, 0]T

Prr(0|0) 12 · I2×2

r̂r(0|0) ∼ N [rr(0), Prr(0|0)]

{Ri, θi} {U [5, 80, 000] m, U [−π, π] rad }

rsi(0) [Ricos(θi), Risin(θi)]
T

xclk,i(0) [10, 1]T

{xsi(0)}
M
i=1

[
rsi(0)

T, xclk,i(0)
T
]T

{Pclk,i(0|0)}Mi=1 diag[302, 0.32]

{x̂clk,i(0|0)}Mi=1 ∼ N
[
xclk,i(0), Pxclk,i

(0|0)
]

{h0,r, h−2,r} {8.0× 10−20, 4.0× 10−23}

{h0,si , h−2,si}
M
i=1 {2.6× 10−22, 4.0× 10−26}

q̃x, q̃y 0.1 m2/s3{
σ2
si

}M

i=1
10 m2

T 0.01 s

Furthermore, three selection strategies were considered. The first strategy performs an

exhaustive M choose K selection, i.e.,
(
M
K

)
= M !

(M−K)!K!
, to determine the global optimal

transmitter selection (with respect to the specified cost function) for the transmitter selection

optimization problem. Note, this strategy is an exhaustive search which makes it extremely

computationally expensive. The second strategy is the OGS algorithm which determines the

transmitter selection via a recursive selection. The third strategy is the OSS algorithm which

determines the transmitter selection via a batch selection. The OGS and OSS strategies
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provide a sub-optimal, yet computationally efficient, transmitter selection solution.

3.4.2 Generating the Terrestrial SOP Locations

The cellular SOP network was modeled as a binomial point process (BPP), where the hori-

zontal positions of the M SOPs are independently and uniformly distributed over an annular

region centered at the aerial vehicle’s current position O, i.e., BO (dmin, dmax) = π(d2max−d2min)

[144], where dmax is the maximum distance for which ranging signals can be detected by the

receiver and dmin is the minimum distance required for the far-field assumption to hold (See

Fig. 3.5(a) for M = 30). The location of the ith SOP is represented in terms of its range

Ri and its aerial vehicle-to-SOP bearing angle θi by (Ricos(θi), Risin(θi)), as shown in Fig.

3.5(b).

SOPi

x

y

SOP1SOP2

SOP3
θi

Ri

dmax = 3000 m

dmin = 5 m

x

y

(a) (b)

BO(dmin; dmax)

O

Figure 3.5: (a) BPP realization with M = 30 SOPs. (b) Parameterization of the ith SOP’s
position.

3.4.3 Optimal Selection, OGS, and OSS Strategy Comparison

The first simulation environment is assumed to be comprised of M = 30 terrestrial SOPs

where the aerial vehicle is tasked with selecting K = 15 SOPs. These results are single
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realization, rather than many MC realizations. The solutions resulting from the various

selection strategies (M choose K, OGS, and, OSS) are displayed in Fig. 3.6. Note that the

selection strategies yielded comparable performance, but the OGS strategy outperforms the

OSS strategy slightly. Moreover, the OGS strategy produced a different selection subset

than the OSS strategy, as expected since the FIM ∈ R2×2 (2–D case). The A-optimality,

E-optimality, and horizontal dilution of precision (HDOP) performance metrics are utilized

to quantify the estimation performance of the selected SOPs. The A-optimality measure

corresponds to the average variance of the state estimates and the E-optimality measure

corresponds to the length of the largest axis of the uncertainty covariance ellipsoid [127].

Table 3.2 presents the performance metrics attained for the two strategies.

The M choose K strategy yielded the best performance metric value for the A-optimality

criterion. Moreover, it also yielded the best performance for the E-optimality and the the

HDOP criteria. Nevertheless, the OGS strategy was not too far behind and actually was

quite close to the optimal cost function evaluation. Specifically, the M choose K global

minimum was found to be J [Irr(w
∗)] = 49.6915 whereas the OGS local minimum was found

to be J [Irr(wOGS)] = 49.7022 and the OSS local minimum was found to be J [Irr(wOSS)] =

49.7798. It is important to note that the optimal M choose K selection came at the price

of computational cost (i.e., run-time). The M choose K strategy took 10 hours to run,

whereas the OGS strategy took only 7.5 milliseconds to run and the OSS strategy took only

5.4 milliseconds to run.

Table 3.2: Performance Metric Comparison for Selection strategies

tr[I−1
rr

(S)] λmax[I
−1
rr

(S)] HDOP Time to Run

M Choose K 49.6915 24.8462 0.516 10.03 hours

OGS 49.7022 24.8606 0.517 7.50 milliseconds

OSS 49.7798 24.9510 0.614 5.40 milliseconds
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OSS (Sub-Optimal)(c)

Selected SOPs Non-Selected SOPsAerial Vehicle-Mounted Receiver

M Choose K (Optimal)(a) (b)OGS (Sub-Optimal)

Figure 3.6: Selection strategy comparison. (a) M choose K. (b) Opportunistic greedy
selection. (c) One shot selection.

The second simulation environment is assumed to be comprised of M = 22 terrestrial SOPs

where the aerial vehicle is tasked with selectingK SOPs, asK is varied from 6 to 14. Further-

more, Monte Carlo (MC) simulations are run for each K value to compare the performance

of three selection strategies (i.e., optimal selection, OGS, and OSS) with one another. The

randomized MC parameters will be the process noise, measurement noise, and transmitter

locations for each randomized realization.

Fig. 3.7 displays the performance results for the different transmitter selection strategies
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with 103 MC simulations for each K value. The large green, blue and red dots represent

the cost function values J (w) for the optimal selection, OGS, and OSS schemes, respec-

tively, averaged over all random MC realizations whereas the small green, blue and red dots

represent each MC realization. Notice for each K value, the distance between the optimal

selection and OGS are very close on average, while the OGS and OSS are far apart (with

respect to the distance between the optimal selection and OGS strategy) on average.

Moreover, Table 3.3 and Table 3.4 display the average cost function values J̄ (w) over all MC

realizations with the corresponding ±1σ for K = 6 − 14. Notice, the average cost function

values over all K values for the OGS and optimal selection strategies are very close with a

low standard deviation, whereas the OSS strategy is prone to worse selection performance

with a higher standard deviation than OGS and the optimal selection.

Opportunistic Greedy Selection One Shot SelectionOptimal Selection

0.9409

1.2344

1.5834

1.9904

2.4429

2.8811

3.3033

3.5090

3.6087

0.0150 0.0658 0.0096 0.0271 0.0070 0.0139 0.0059 0.0088 0.0057

Optimal Selection
VersusOGS

(Zoomed In)

OSS Versus OGS

Figure 3.7: Cost function point cloud with 103 MC realizations for the optimal selection
(green), opportunistic greedy selection (red), and one shot selection (blue) strategies. The
averaged cost function value over all MC realizations is represented as a large dot, whereas
each selection strategy’s cost function value for each MC realization is represented as a small
dot.
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Table 3.3: Transmitter Selection Strategy’s Average Cost Function Values for K = 6− 10

K 6 7 8 9 10

J̄ (w∗) [±σ∗] 6.45 [±10−3] 5.56 [±5 · 10−3] 4.88 [±6 · 10−3] 4.35 [±9 · 10−3] 3.92 [±1 · 10−2]

J̄ (wOGS) [±σOGS] 6.47 [±2 · 10−2] 5.62 [±2 · 10−2] 4.89 [±1 · 10−2] 4.38 [±1 · 10−2] 3.93 [±1 · 10−2]

J̄ (wOSS) [±σOSS] 10.08 [±0.76] 9.13 [±0.99] 8.19 [±1.13] 7.26 [±1.19] 6.37[±1.16]

Table 3.4: Transmitter Selection Strategy’s Average Cost Function Values for K = 11− 14

K 11 12 13 14

J̄ (w∗) [±σ∗] 3.57 [±1 · 10−2] 3.28 [±1 · 10−2] 3.03 [±2 · 10−2] 2.82 [±2 · 10−2]

J̄ (wOGS) [±σOGS] 3.59 [±2 · 10−2] 3.29 [±2 · 10−2] 3.04 [±2 · 10−2] 2.83 [±3 · 10−2]

J̄ (wOSS) [±σOSS] 5.58 [±1.08] 4.87 [±0.96] 4.28 [±0.84] 3.77 [±0.70]

3.4.4 Effect of Timing on the Optimal Transmitter Selection

This simulation environment is assumed to be comprised of M = 22 terrestrial SOPs where

the aerial vehicle is tasked with selecting K SOPs, as K is varied from 6 to 14. Furthermore,

Monte Carlo (MC) simulations are run for each K value using the optimal transmitter

selection strategy. The randomized MC parameters will be the process noise, measurement

noise, and transmitter locations for each randomized realization.

Fig. 3.8 highlights the performance of the optimal transmitter selection via the M choose K

strategy while considering timing (pseudorange observations) and neglecting timing (range-

only observations). Here, 250 MC simulations are performed for K = 6 − 14. The perfor-

mance metric used is the, previously defined, A-optimality criterion corresponding to the

uncertainty in the receiver’s position error states tr [Prr ], averaged over all MC realizations.

Not suprisingly, the optimal transmitter selection’s uncertainty is reduced when timing is

considered by using pseudorange observations (black) compared to when timing is neglected

by using range-only observations (red) for each K value. This is because pseudorange ob-
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servations contain more information content than range-only observations via the clock bias

state.

It is important to notice, even with improved performance, the difference is almost negligible

between the range-only and pseudorange observation. Specifically, the average reduction in

position error uncertainty is 0.25 m2 (variance) across all K values; specifically, for K = 11

the reduction in position error uncertainty is 0.22 m2 (variance). These optimal transmitter

selection results justify the need to use range-only observations, rather than the pseudorange

observations. Moreover, considering range-only observations decreases computational efforts

via a 2× 2 matrix inversion, rather than a nx × nx matrix inversion.

Range-Only Observations Pseudorange Observations

0.22 m
2

Figure 3.8: Optimal transmitter selection’s performance using the A-optimality criterion
averaged over 250 MC realizations. Comparison between psuedorange observations, i.e.,
considering timing, (black) and range-only observations, neglecting timing, (red).
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3.4.5 Computational Cost

This simulation environment is assumed to be comprised of M terrestrial SOPs where the

aerial vehicle is tasked with selecting K SOPs. The values of both M and K are varied,

while a computer with a processor base frequency @ 3.00 GHz and a CPU with 8-cores,

8-threads is used. The computational cost of using the optimal selection (i.e., M choose K

strategy) grows exponentially in time (hours) [145], while the computational cost of using

the OGS and OSS strategies grows quadratic in time (milliseconds), respectively. Fig. 3.9

compares the time to run for each transmitter selection strategy.

M Choose K (Optimal)(a) (b)OGS (Sub-Optimal)

Number of Total SOPs (M) [#]

Number of Total SOPs (M) [#]

Number of Total SOPs (M) [#]
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Figure 3.9: Each selection strategy’s time to run. (a) M choose K. (b) OGS. (c) OSS.
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3.5 Experimental Results

This section demonstrates the efficacy of the proposed OGS and OSS strategies to select a

“manageable” subset of terrestrial SOP pseudorange observations to navigate an aircraft in

a real-world environment.

3.5.1 Hardware and Software Setup

In March 2020, a joint effort between the Autonomous Systems Perception, Intelligence, and

Navigation Laboratory (ASPIN) and Edwards Air Force Base (AFB), California, U.S.A. led

to week-long flights in a mission called “SNIFFER: Signals of opportunity for Navigation In

Frequency-Forbidden EnviRonments.” The flights took place on a Beechcraft C12 Huron, a

fixed-wing U.S. Air Force aircraft, flown by members of the USAF Test Pilot School (TPS)

over two different regions: (i) a rural region located in Edwards, California, USA, and (ii) a

semi-urban region located in Palmdale, California, USA.

The C-12 aircraft was equipped with a quad-channel universal software radio peripheral

(USRP)-2955, three consumer-grade 800/1900 MHz Laird cellular antennas, GPS antenna,

a solid-state drive for data storage, PCIe cable, and a laptop computer running ASPIN Labo-

ratory’s software-defined radio (SDR), called MATRIX: Multichannel Adaptive TRansceiver

Information eXtractor, for real-time monitoring of the cellular signals [146, 128, 36]. Further-

more, the equipment necessary for the experiment was assembled at the ASPIN Laboratory

on a special rack provided by the U.S. Air Force and was mounted on the C-12 aircraft.

The MATRIX SDR produces the navigation observables, i.e., Doppler frequency, carrier

phase, and pseudorange, along with the corresponding carrier-to-noise ratio (C/N0). The

experimental hardware setup is shown in Fig. 3.10.
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Figure 3.10: Hardware setup equipped to the C-12 aircraft.

The initial state vector was constructed as x̂(0|0) = [r̂r(0|0)T, ˙̂rr(0|0)T, cδ̂t1(0|0), c ˙̂
δt1(0|0),

. . . , cδ̂tK(0|0), c ˙̂
δtK(0|0)]T with a corresponding initial estimation error covariance defined

as P(0|0) = diag[102 · I3×3, 10 · I3×3, 108, 10, . . . , 108, 10]. It should be noted the modified

clock error states of each SOP was initialized using the pseudorange observations from the

initial two time epochs. Specifically, the clock bias was initialized as cδti(0|0) = zsi(0) −

∥rr(0) − rsi∥2 and the clock drift was initialized as cδ̇ti(0|0) = 1
T
[zsi(1) − zsi(0) − ∥rr(1) −

rsi∥2 + ∥rr(0)− rsi∥2], respectively.

Furthermore, the aircraft’s dynamics were assumed to evolve according to the simple, yet

effective, velocity random walk model [121], with power spectra given by q̃E = q̃N = 5

m2/s3 and q̃U = 10−3 m2/s3 the continuous-time acceleration noise in the East (E), North

(N), and Up (U) directions, respectively, with a sampling time T = 0.01 s. The receiver’s

clock covariance Qclk,r was set to correspond to a worst TCXO with h0,r = 2.0 × 10−19 s

and h−2,r = 2.0 × 10−20 s−1. The SOPs’ clock covariance Qclk,si was set to correspond to a

typical OCXO with h0,si = 8.0 × 10−20 s and h−2,si = 4.0 × 10−23 s−1, which is typical for
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cellular towers [129, 130]. The time-varying measurement covariance R was assumed to be

proportional to the inverse of the carrier-to-noise ratio at each time step.

3.5.2 Flight A: Transmitter Selection in Rural Region
(
57
15

)
The rural region was comprised of M = 57 terrestrial cellular SOPs, where the aircraft

was tasked with selecting K = 15 SOPs with which to navigate after GNSS signals be-

came unavailable. The aircraft’s position and velocity state vector was initialized with

[r̂r(0|0)T, ˙̂rr(0|0)T]T = [2.51, 10.13, 1996.22, 83.58, −17.55, −5.37]T.

The OGS and OSS strategies were implemented to choose a selection subset S consisting of

K = 15 SOPs, after access to GNSS signals was cut off. The selected SOPs from the OGS

strategy are denoted by the red pins, the selected SOPs from the OSS strategy are denoted

by yellow pins, the selected SOPs from both the OSS and OGS strategies are denoted by

orange pins, and the non-selected SOPs are denoted by white pins in Fig. 3.11.

In this scenario, the aircraft navigated along the green trajectory in Fig. 3.11 for 1.48 km

utilizing the selected SOPs over a valid selection region. For the OGS strategy, the aircraft’s

position and velocity root mean square error (RMSE) was found to be 6.28 m and 1.44 m/s,

respectively, and executed in approximately 19.3 ms. For the OSS strategy, the aircraft’s

position and velocity RMSE was found to be 7.13 m and 1.39 m/s, respectively, and executed

in approximately 16.5 ms. It should be noted, the optimal solution (i.e., global minimizer)

for terrestrial SOP selection is infeasible to compute using the M choose K selection strategy

due to its formidable run time. In light of this, 105 Monte Carlo (MC) runs were performed

in an attempt to capture a range of best-to-worst selections. The randomized parameter for

the MC runs was the selection subset S, process noise, and measurement noise.

Fig. 3.12 plots the histogram probability density function (pdf) of the position and velocity
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RMSEs over all MC runs. These figures provide insight into the error distribution of the

aerial vehicle’s navigation solution for the ensemble of randomized realizations. Notice,

the OGS strategy’s position RMSE value is placed in the left-most histogram bin, whereas

the OSS strategy’s position RMSE value is slightly worse, implying the OGS’s navigation

solution is close to the navigation solution obtained when using the best MC realization.

Table 3.5 and Table 3.6 summarizes the navigation performance for the OGS strategy, OSS

strategy, and the range of obtained performance metrics (i.e., [minimum, maximum]) with

the MC selection.

C-12 Aircraft
OGS Selected Transmitters

Non-Selected Transmitters

OSS Selected Transmitters

OGS and OSS Selected Transmitters

Selection Point

1.48 km

Figure 3.11: Experimental layout and results using the OGS and OSS strategies for trans-
mitter selection during the aircraft’s flight. Map data: Google Earth.
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OGS OSS

Figure 3.12: Histogram pdf of the position and velocity RMSEs for 105 different randomized
transmitter selections versus the OGS strategy’s RMSEs (red) versus the OSS strategy’s
RMSEs (green).

Table 3.5: Experiment 1: Navigation Solution Performance

Selection Type Pos. RMSE [m] Vel. RMSE [m/s]

105 Monte Carlo Runs [4.5260, 71.5528] [0.9751, 7.6061]

Opportunistic Greedy Selection 6.2752 1.4361

One Shot Selection 7.1305 1.3880

Table 3.6: Experiment 1: Navigation Solution Performance

Selection Type Max Pos. Error [m] Max Vel. Error [m/s] Run Time [ms]

105 Monte Carlo Runs [10.5017, 125.0583] [5.9020, 11.4588] -

Opportunistic Greedy Selection 10.5030 6.3813 19.3

One Shot Selection 10.5030 6.3821 16.5

3.5.3 Flight B: Transmitter Selection in Semi-Urban Region
(
18
9

)
The semi-urban region was comprised of M = 18 terrestrial cellular SOPs, where the air-

craft was tasked with selecting K = 9 SOPs with which to navigate after GNSS signals
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became unavailable. The aircraft’s position and velocity state vector was initialized with

[r̂r(0|0)T, ˙̂rr(0|0)T]T = [2.51, 10.13, 536.78, 80.17, −14.48, −5.61]T.

The M choose K (optimal selection), OGS, and OSS strategies were implemented to choose

a selection subset S consisting of K = 9 SOPs after access to GNSS signals was cut off.

It should be noted, the number of SOPs in this environment was small enough to compute

the optimal solution via the M choose K selection strategy which perform as an exhaustive

search over all possible selection permutations to determine the global minimizer for the

transmitter selection optimization problem. Therefore, MC selection is not necessary to be

conducted in this region.

The selected SOPs from the OSS strategy are denoted by yellow pins, the selected SOP from

the optimal selection are denoted by a green pin, the selected SOPs from both the optimal

selection and OGS strategy are denoted by violet pins, the selected SOPs from both the

OGS and OSS strategies are denoted by orange pins, the selected SOPs from the optimal

selection, OSS, and OGS strategies are denoted by blue pins, and the non-selected SOPs are

denoted by white pins in Fig. 3.13.

In this scenario, the aircraft navigated along the green trajectory in Fig. 3.13 for 1.22 km,

utilizing the selected SOPs over a valid selection region. For the optimal selection, the

aircraft’s position and velocity root mean square error (RMSE) was found to be 5.83 m

and 1.45 m/s, respectively, and executed in 700.3 ms. For the OGS strategy, the aircraft’s

position and velocity root mean square error (RMSE) was found to be 6.07 m and 1.42

m/s, respectively, and executed in 5.3 ms. For the OSS strategy, the aircraft’s position

and velocity RMSE was found to be 6.70 m and 1.35 m/s, respectively, and executed in

3.9 ms. Notice, the OGS strategy is close to that of the optimal selection’s navigation

solution performance, whereas the OSS strategy performs slightly worse. Further implying,

the computationally efficient OGS selection strategy will yield a similar performance to the

computationally expensive optimal selection strategy over this valid selection region.
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Table 3.7 and Table 3.8 summarizes the navigation performance for the optimal selection

via the M choose K strategy, OGS strategy, and OSS strategy.

Optimal and OGS Transmitters

Optimal, OGS, and OSS Transmitters

Non-Selected Transmitters

OSS Transmitters

OGS and OSS Transmitters

Optimal Transmitters

Selection Point

C-12 Aircraft

1.22 km

Figure 3.13: Experimental layout and results using the optimal selection, OGS, and OSS
strategies for transmitter selection during the aircraft’s flight. Map Data: Google Earth.

Table 3.7: Experiment 2: Navigation Solution Performance

Selection Type Pos. RMSE [m] Vel. RMSE [m/s]

Optimal Selection 5.8336 1.4530

Opportunistic Greedy Selection 6.0753 1.4176

One Shot Selection 6.6958 1.3454
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Table 3.8: Experiment 2: Navigation Solution Performance

Selection Type Max Pos. Error [m] Max Vel. Error [m/s] Run Time [ms]

Optimal Selection 10.7968 5.9025 700.3

Opportunistic Greedy Selection 10.7968 5.9025 5.3

One Shot Selection 10.7967 5.9025 3.9
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Chapter 4

Conclusions

This thesis provided a performance analysis and efficient transmitter selection strategies for

aerial vehicle navigation with terrestrial signal of opportunity. A lower bound for the error

covariance of the radio SLAM framework is derived and an observability analysis of a UAV

with imperfect knowledge of its initial state for two partially known and one unknown SOP

towers in the environment (i.e., base case) was assessed and observability was found to be

guaranteed for l ≥ 4 time-steps. In addition, computationally efficient, yet sub-optimal,

transmitter selection strategies to choose the most informative subset of terrestrial SOPs

to use for navigation was presented. The simulation results demonstrated the lower bound

on the error covariance numerically via MC runs, and demonstrated a performance analy-

sis for the optimal selection, OGS, and OSS strategies (transmitter selection performance

comparison and computational cost comparison) as well as showed the effect of timing on

the optimal selection. The experimental results on the collected data from a UAV and a

U.S. Air Force high altitude aircraft navigating without GNSS signals demonstrated the

the efficacy of the developed theory and proposed algorithms. It was shown that a UAV

navigating via radio SLAM with signals from two partially known cellular SOPs and one

unknown cellular SOP can achieve bounded localization errors and bounded estimation error
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variance over a bounded region. Furthermore, it was shown that an aircraft navigating with

K out of M cellular SOPs in, (i) a rural region and (ii) a semi-urban region, using the OGS

performs comparably well with the optimal selection (or best MC realization), whereas the

OSS performs slightly worse, over a valid transmitter selection region.
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Appendix A

Relationship Between the Weighted

HDOP Matrix and Information

Content

Dilution of precision (DOP) states how errors in the observation will affect the errors in the

final estimates of the unknown quantities. In particular, this analysis will be considering the

weighted horizontal dilution of precision (HDOP).

Dw =

 σ2
x σ2

xy

σ2
xy σ2

y

 , (A.1)

where Dw ≜ [HTR−1H]−1 represents the weighted HDOP matrix [147, 148] with the associ-

ated Jacobian matrix for the observation vector z′ ≜ [z′s1 , . . . , z′sM ]T defined as,

H =
rT
r − rT

si

∥rr − rsi∥2
, (A.2)

and HDOP =
√

σ2
x + σ2

y.
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Now, the weighted HDOP matrix can be related to information content by the inverse of the

estimation error covariance matrix, as follows

D−1
w =

K∑
j=1

1

σ2
sj

 (xr−xsj )
2

(xr−xsj )
2+(yr−ysj )

2

(xr−xsj )(yr−ysj )

(xr−xsj )
2+(yr−ysj )

2

(xr−xsj )(yr−ysj )

(xr−xsj )
2+(yr−ysj )

2

(yr−ysj )
2

(xr−xsj )
2+(yr−ysj )

2


=

K∑
j=1

1

σ2
sj

 α2
j αjβj

αjβj β2
j


where αi =

xr−xsi√
(xr−xsi )

2+(yr−ysi )
2
and βi =

yr−ysi√
(xr−xsi )

2+(yr−ysi )
2
are variables which define the

position unit vectors (i.e., [αi, βi]
T =

rr−rsi

∥rr−rsi∥2
). Furthermore, the weighted HDOP matrix

can be related to the information content in a closed form, defined by

Dw = Λ
K∑
j=1

1

σ2
sj

 β2
j −αjβj

−αjβj α2
j

 , (A.3)

where

Λ =

{ K∑
j=1

α2
j

σ2
sj

}{
K∑
j=1

β2
j

σ2
sj

}
−

{
K∑
j=1

αjβj

σ2
sj

}2
−1

is a constant value, corresponding to the information content of the position states, which is

found in all HDOP terms. Finally, the HDOP constant can be defined as

HDOP =

√√√√Λ

{
K∑
j=1

1

σ2
sj

(
β2
j + α2

j

)}

Remark: Typically, for navigation applications, the measurement noise is assumed to be

proportional to the inverse of the carrier-to-noise ratio (C/N0), i.e., R = γ[C/N0]
−1 where

γ > 0 [80, 81].
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Appendix B

Fisher Information Matrix Structure:

Pseudorange and Range-Only

Observations

The FIM structure of K selected SOPs is shown for both pseudorange and range-only obser-

vations. The FIM structure has an affine form, i.e., the information content is represented as

the addition of the prior FIM and a summation of the information content associated with

the K selected SOPs (out of M in total SOPs), as follows for

• Range-Only Observations

I(x) = I0(x) +
M∑
i=1

wiIi(x),

= I0(x) +
K∑
j=1

1

σ2
sj

 α2
j αjβj

αjβj β2
j

 , (B.1)
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• Pseudorange Observations

I(x) = I0(x) +
M∑
i=1

wiIi(x),

= I0(x) +



∑K
j=1

α2
j

σ2
sj

∑K
j=1

αjβj

σ2
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. . . αK
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, (B.2)

where x is the state vector, wi is the binary decision variable (determines whether to accept

or reject the i-th observation), j = 1, . . . , K ∈ S correspond to indices of the transmitters

contained in the selection subset, I0(x) ≻ 0 is the prior FIM, αj =
xr−xsj√

(xr−xsj )
2+(yr−ysj )

2
and

βj =
yr−ysj√

(xr−xsj )
2+(yr−ysj )

2
are variables which define the position unit vectors (i.e., [αj, βj]

T =

rr−rsj

∥rr−rsj ∥2
), and σ2

sj
is the measurement noise associated with the j-th observation.
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Appendix C

Sandia National Laboratories Funding

Statement

Sandia National Laboratories is a multi-mission laboratory managed and operated by Na-

tional Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of

Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security

Administration under contract DE-NA0003525.

This thesis describes objective technical results and analysis. Any subjective views or opin-

ions that might be expressed in the thesis do not necessarily represent the views of the U.S.

Department of Energy or the United States Government.

The Sandia document release number is: SAND2022-7329 T.
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