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Project Proposal Overview

Robots with different types of sensing modalities collaborate to “paint a better picture of the world”
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Background on Resource Allocation and Graph Neural

Networks (GNNs)
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[1] H. Chakraa, F. Guerin, E. Leclercq, and D. Lefebvre, “Optimization techniques for Multi-Robot Task Allocation problems: Review on the state-of-the-art,” in Robotics and Autonomous Systems, vol. 168, p. 104492, Oct. 2023.
[2] C. Guo, P. Zhu, Z. Zhou, L. Lang, Z. Zeng, and H. Lu, “Imitation Learning with Graph Neural Networks for Improving Swarm Robustness under Restricted Communications,” in Applied Sciences, vol. 11, no. 19, p. 9055, Sept. 2021.
[3] Q. Li, F. Gamma, A. Ribeiro, and A. Prorok, “Graph neural networks for decentralized multi-robot path planning,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2020, pp. 11785-11792.
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Graph Attention Networks

The input and output set of node features is defined as

h = {f_{l, . .,EN}, i_i,,, e RY  (Input)

softmax

h' = {E’l, e _'jv}, l_{; c RF"  (Output)

where N is the number of nodes, and F and F’ (of potentially different cardinality
than F) are the number of features in each node. . g

W e RE'xFis the weight matrix allowing us to focus attention on specific
features

concat/avg /7~
: ~> h]

a - RF'XF _y R is the attention mechanism that uses nonlinear activation
function(e.g: LeakyRelLU) to output attention scores

P. Velickovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lid, and Y. Bengio, “Graph attention networks,” in Proceedings of International Conference on Learning Representations, 2018.
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Graph Attention Networks

Attention coefficients, ¢;;, indicate the importance of node j’s features to node i:

softmax

€ij — CL(W?L@', WHJ)

Graph structure information is injected via masked attention ( ;) w Vi

—i.e., compute €;; for node j € N/; (neighborhood set of node i, which includes
node i)

concat/avg /7~
R ~> h]

explée;;
Qi = softmax(eij) — z N gXIJ))(ek)
keEN; v

P. Velickovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lid, and Y. Bengio, “Graph attention networks,” in Proceedings of International Conference on Learning Representations, 2018. 6
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Multi-Head Graph Attention Networks

Multi-head attention in intermediate layers applies a nonlinearity
activation function and then concatenates.

softmax

K
—i, o k', k—r
k?:]. JEN@ L o I -

Multi-head attention at the final layer averages the values and then
applies nonlinearity activation function.

concat/avg /7~

K
S 1 S
h, =0 EE Y ol WFEhy
k=1j€EN;

P. Veli€kovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lid, and Y. Bengio, “Graph attention networks,” in Proceedings of International Conference on Learning Representations, 2018.
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ScheduleNet
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(sj — fi)Xij = 0,¥(wi, Tj) € Lproximity 6] 4
= [ —=Xi ;) =0,Y(1i, tj) € Lproximi &)
d d J7 - pronimity Simple Temproal A 4
Mixed Integer Linear Program Network R
for task-scheduling with || Generation

temporospatial constraints [4 )
P P 14] Overview of the ScheduleNet Framework [5]

NP-Hard!

[4] Z. Wang, C. Liu, and M. Gombolay, “Heterogeneous graph attention networks for scalable multi-robot scheduling with temporospatial constraints,” in Autonomous Robots, vol. 46, pp. 249-268, Aug. 2021.
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ScheduleNet

Heterogenous Graph GNN Architecture
* Nodes: tasks, robots « HeteroGATLayer: handles multi-edge-type attention.
« Edges: communication links « MultiHeteroGATLayer: uses multi-head attention and merges via
* Node features: durations, positions, ‘cat’ or 'avg'.
feasibility, etc. « ScheduleNetdLayer: stacks 4 multi-head GAT layers to produce
final node embeddings.
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[4] Z. Wang, C. Liu, and M. Gombolay, “Heterogeneous graph attention networks for scalable multi-robot scheduling with temporospatial constraints,” in Autonomous Robots, vol. 46, pp. 249-268, Aug. 2021.
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Results

ScheduleNet Aggregation
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Future Work

Extend ScheduleNet to
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Thank You for Listening!
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