



# Collaboration of Heterogeneous Multi-Agent Systems with Terrain-Dependent Mobility

Alex Nguyen



**Course:** MAE 276 Geometric Nonlinear Control

Instructor: Prof. Haithem Taha

Date: June 13th, 2023

Institution: University of California, Irvine





# (Biological) Multi-Agent Systems

"Jointly beneficial interactions between members of different species." Pauli et al., 2015, Proc. R. Soc. B.





ttps://www.nnm.ac.uk/discover/mutualism-examples-of-species-that-work-together.n

**Pistol Shrimps and Gobies** 



 $\label{eq:https://www.nhm.ac.uk/discover/mutualism-examples-of-species-that-work-together.html} Honeyguides and Humans$ 



Nile Crocodile and Egyptian Plover





# (Engineered) Multi-Agent Systems



**Amazon Warehouses** 



https://spectrum.ieee.org/multi-robot-slam-icra2023 Localization and Mapping



 $\label{eq:https://www.aglaw.us/janzenaglaw/2020/7/16/is-your-farm-ready-for-the-swarm} Agriculture Processes$ 





# Heterogeneity





## Agents in a Shared Workspace



Consider two agents coexisting within a shared workspace

- · Amphibious
- $\cdot$  Mobility depends on terriain





Rabbit in pond

Turtle on land



**Q:** What about if the rabbit and turtle worked together??





# Terrain-Dependent Mobility Gain

Consider the terrain-dependent gain of agent i to be a function of spatial x position only, i.e.,  $\kappa_r(x_r)$  and  $\kappa_t(x_t)$ .

Two candidate functions which can capture the desired behavior are







# **Proximity Metric**

Consider a proximity metric to distinguish the relative distance between agents to be a function of planar position states, i.e.,  $\chi(\boldsymbol{x}_r, \boldsymbol{x}_t)$  where  $\boldsymbol{x}_r = [x_r, y_r]^{\mathsf{T}}$  and  $\boldsymbol{x}_t = [x_t, y_t]^{\mathsf{T}}$ .

Two candidate functions which can capture the desired behavior are





# **System Dynamics**

We will consider dynamics in control affine form, i.e.,  $\dot{x} = f(x) + \sum_{j} g_{j}(x) u_{j}$ , given as

 $\begin{bmatrix} \dot{\boldsymbol{x}}_r \\ \dot{\boldsymbol{x}}_t \\ \dot{\boldsymbol{\alpha}} \end{bmatrix} = \begin{bmatrix} G_r(\boldsymbol{x}_r) \\ \alpha \chi(\boldsymbol{x}_r, \boldsymbol{x}_t) \cdot I_{d \times d} \\ 0 \end{bmatrix} \boldsymbol{u}_r + \begin{bmatrix} \alpha \chi(\boldsymbol{x}_r, \boldsymbol{x}_t) \cdot I_{d \times d} \\ G_t(\boldsymbol{x}_t) \\ 0 \end{bmatrix} \boldsymbol{u}_t + \begin{bmatrix} 0 \\ 0 \\ \kappa \end{bmatrix} v,$  $\boldsymbol{g}_r(\boldsymbol{x})$  $\boldsymbol{g}_t(\boldsymbol{x})$  $\boldsymbol{g}_{ ext{collab}}$ where  $d = \{1, 2, 3\}$  is the position states' dimension  $G_r(x_r) = \kappa_r(x_r) \cdot I_{d \times d} \succ 0$  is the rabbit's control gain  $G_t(x_t) = \kappa_t(x_t) \cdot I_{d \times d} \succ 0$  is the turtle's control gain  $\lambda(m{x}_r,m{x}_t)\geq 0$  is the proximity metric quantifying the closeness between agents  $\kappa > 0$  is the control gain corresponding to collaboration strength  $m{x}_r \in \mathbb{R}^d, m{x}_r \in \mathbb{R}^d$  are the rabbit and turtle (position) states, respectively lpha distinguishes the difference between collaboration (lpha
eq 0) and closeness (lpha=0)





# **Several Probing Questions**

For simplicity, we will consider the case of d = 1 (1-D position states), e.g.,  $x_r \in \mathbb{R}$  and  $x_t \in \mathbb{R}$ . Now, we will pose the following questions:

**Q1:** What happens when we start taking Lie brackets with our controlled dynamics vector fields?

**Q2:** Will the Lie bracket's control gain be larger than the original control gain? If yes, under what conditions does this hold?

**Q3:** How can the control gain obtained from taking the Lie Bracket be realized?





g

 $x(\Delta t)$ 

-q

#### 10

# Taking Lie Brackets of Vector Fields

**Recall:** the Lie bracket is defined as  $[X, Y] = J_Y X - J_X Y$  where  $J_Y, J_X$  are  $n \times n$  Jacobian matrices and X, Y are vector fields.

**A1:** Assume: 
$$\kappa_r(x_r) = \frac{1}{2} (\tanh(ax_r) + 1), \ \kappa_t(x_t) = 1 - \frac{1}{2} (\tanh(ax_t) + 1)$$
  
 $\chi(x_r, x_t) = \frac{1}{\gamma\sqrt{\pi}} \exp\left[-(\frac{(x_r - x_t)^2}{\gamma})^2\right]$ 

(a) 
$$[\boldsymbol{g}_{t}(\boldsymbol{x}), \boldsymbol{g}_{\text{collab}}] = J_{\boldsymbol{g}_{\text{collab}}} \boldsymbol{g}_{t}(\boldsymbol{x}) - J_{\boldsymbol{g}_{t}(\boldsymbol{x})} \boldsymbol{g}_{\text{collab}}$$
  

$$= \begin{bmatrix} -\frac{\exp^{\frac{-(xr-xt)^{2}}{\gamma^{2}}}}{\sqrt{\pi\gamma}} \\ 0 \\ 0 \end{bmatrix} \qquad \boldsymbol{g}_{t}(\boldsymbol{x}) = \begin{bmatrix} \frac{\exp^{\frac{-(xr-xt)^{2}}{\gamma^{2}}}}{\sqrt{\pi\gamma}} \\ 1 - \frac{1}{2}(\tanh(a \cdot x_{t}) + 1) \\ 0 \end{bmatrix}$$

 $\Rightarrow$  This Lie bracket does not help us gain more control authority.

 $\cdot$  Similarly, we can compare  $[{m g}_r({m x}), {m g}_{
m collab}]$  and  ${m g}_r({m x})$ , but the result will be the same.



# 11 Taking Lie Brackets of Vector Fields (Continued)



 $\Rightarrow$  This Lie bracket has the potential to help us gain more control authority!





# 12 Realization of Improved Control Authority

A2: Improved control authority should only happen when  $\chi(x_r, x_t) \neq 0$ , so we assume  $x_r = x_t$ 

$$\Rightarrow \left[\boldsymbol{g}_{t}(\boldsymbol{x}), \boldsymbol{g}_{r}(\boldsymbol{x})\right] = \begin{bmatrix} \frac{a\alpha \operatorname{sech}^{2}(ax_{t})}{2\sqrt{\pi}\gamma} \\ \frac{a\alpha \operatorname{sech}^{2}(ax_{t})}{2\sqrt{\pi}\gamma} \\ 0 \end{bmatrix}, \ \boldsymbol{g}_{t}(\boldsymbol{x}) = \begin{bmatrix} \frac{\alpha}{\sqrt{\pi}\gamma} \\ 1 - \frac{1}{2}(\tanh(ax_{t}) + 1) \\ 0 \end{bmatrix}, \ \boldsymbol{g}_{r}(\boldsymbol{x}) = \begin{bmatrix} \frac{1}{2}(\tanh(ax_{t}) + 1) \\ \frac{\alpha}{\sqrt{\pi}\gamma} \\ 0 \end{bmatrix}$$

For the turtle, let us determine when control gain would be larger for the Lie bracket vector field

$$\frac{a\alpha\operatorname{sech}^2(ax_t)}{2\sqrt{\pi\gamma}} \ge 1 - \frac{1}{2}(\tanh(ax_t) + 1) \quad \to \quad \left[\frac{\alpha}{\gamma}\right]_t \ge \frac{2\sqrt{\pi}(1 - \frac{1}{2}(\tanh(ax_t) + 1))}{\operatorname{asech}^2(ax_t)} = \frac{2\sqrt{\pi}\kappa_t(x_t)}{\operatorname{asech}^2(ax_t)}$$

For the rabbit, let us determine when control gain would be larger for the Lie bracket vector field

$$\frac{a\alpha\operatorname{sech}^2(ax_r)}{2\sqrt{\pi}\gamma} \ge \frac{1}{2}(\tanh(ax_r)+1) \quad \to \quad \left[\frac{\alpha}{\gamma}\right]_r \ge \frac{2\sqrt{\pi}(\frac{1}{2}(\tanh(ax_r)+1))}{\operatorname{asech}^2(ax_r)} = \frac{2\sqrt{\pi}\kappa_r(x_r)}{\operatorname{asech}^2(ax_r)}$$

as long as this inequality hold, the Lie bracket can improve control authority!

A3: Improved control authority (i.e., higher gain) may be achievable by flowing along the Lie bracket direction

$$\phi_{\sqrt{t}}^{-\boldsymbol{g}_{r}(\boldsymbol{x})} \circ \phi_{\sqrt{t}}^{-\boldsymbol{g}_{t}(\boldsymbol{x})} \circ \phi_{\sqrt{t}}^{\boldsymbol{g}_{r}(\boldsymbol{x})} \circ \phi_{\sqrt{t}}^{\boldsymbol{g}_{t}(\boldsymbol{x})}$$





# **Optimal Control Formulation**

 $\min_{\boldsymbol{x}(\cdot), \ \boldsymbol{u}(\cdot)} \quad J = \int_0^{t_f} \|\boldsymbol{u}(t)\|_2^2 \ dt$ Control Energy (Cost Function) s.t.  $\dot{\boldsymbol{x}}(t) = \boldsymbol{g}_r(\boldsymbol{x}(t))\boldsymbol{u}_r(t) + \boldsymbol{g}_t(\boldsymbol{x}(t))\boldsymbol{u}_t(t) + \boldsymbol{g}_{\text{collab}}v(t)$ System Dynamics (Constraint)  $oldsymbol{x}(0) = oldsymbol{x}_0, \ oldsymbol{x}(t_f) = oldsymbol{x}_f$  -----Boundary Conditions (Constraint)  $x_{\min} \le x_r(t) \le x_{\max}, \ x_{\min} \le x_t(t) \le x_{\max}$ Boxed Domain (Constraint)  $y_{\min} \le y_r(t) \le y_{\max}, \ y_{\min} \le y_t(t) \le y_{\max}$  $\|\boldsymbol{u}(t)\|_{\infty} \leq \bar{u},$  -Bounding Actuation (Constraint)

where

$$\boldsymbol{x}_r(t) \in \mathcal{X}_r \subset \mathbb{R}^2, \ \boldsymbol{x}_t(t) \in \mathcal{X}_t \subset \mathbb{R}^2, \ \alpha \in \mathbb{R}$$

$$\boldsymbol{x}(t) = \left[\boldsymbol{x}_r(t), \boldsymbol{x}_t(t), \alpha(t)\right]^{\mathsf{T}} \in \mathcal{D} \subset \mathbb{R}^5$$
$$\boldsymbol{u}(t) = \left[\boldsymbol{u}_r(t), \boldsymbol{u}_t(t), v(t)\right]^{\mathsf{T}} \in \mathcal{U} \subset \mathbb{R}^5$$

**Q:** How to solve this optimal control problem?

 $\Rightarrow$  Using an open-source software tool for numerical optimization and optimal control!







# **Simulation Settings**

Consider the 2-D domain to be compact, and defined as  $\mathcal{D} = \mathcal{D}_{water} \cup \mathcal{D}_{land}$ 



Terrain-Dependent Proportional Gains:  $\kappa_r(x_r) = \frac{1}{2}(\tanh(ax_r) + 1) \in [0.05, 1]$   $\kappa_t(x_t) = 1 - \frac{1}{2}(\tanh(ax_t) + 1) \in [0.05, 1]$ 

Simulation Settings:  $\cdot$  Time Horizon = 30 s  $\cdot$  Sampling Time = 0.1 s  $\cdot \mathcal{D} = [-2, 2] \times [-2, 2] ([x_{\min}, x_{\max}] \times [y_{\min}, y_{\max}])$  $\|u(t)\|_{\infty} \leq \bar{u} = 1 \text{ m/s}$  $\cdot \mathsf{IC} : x_0 = x_r(0) = x_t(0) = [-1, -1]^\mathsf{T}$ • FC:  $x_f = x_r(t_f) = x_t(t_f) = [1, 1]^{\mathsf{T}}$ · Individual:  $\alpha(t) = 0 \ \forall t$ To Activate · Collaboration:  $\alpha(0) = \alpha(t_f) = 0$  Collaboration **Proximity Function:** Let  $\chi'(\boldsymbol{x}_r, \boldsymbol{x}_t) = rac{1}{\gamma\sqrt{\pi}} \exp\left[-(rac{z(\boldsymbol{x}_r, \boldsymbol{x}_t)}{\gamma})^2
ight]$  $\rightarrow \chi(\boldsymbol{x}_r, \boldsymbol{x}_t) = \frac{\chi'(\boldsymbol{x}_r, \boldsymbol{x}_t)}{\|\chi'(\boldsymbol{x}_r, \boldsymbol{x}_t)\|_2}$ 





### Case Study 1: Individual Trajectory Mode Selection: Individual







# Case Study 1: Individual Trajectory



Optimization Solver Run-Time = 6.76 seconds Simulation Time = 30 seconds







# Case Study 2: Collaborative Trajectory







### **Case Study 2: Collaborative Trajectory**



Simulation Time = 30 seconds





# <sup>19</sup> Case Study 2: Collaborative Trajectory (Continued)



Collaboration is feasible when the position states lie on the characteristic lines of  $x_r(t) = x_t(t)$  and  $y_r(t) = y_t(t)!$ 







# Thank you for listening!