

Collaboration of Heterogeneous Multi-Agent Systems with Terrain-Dependent Mobility

Alex Nguyen

Course: MAE 276 Geometric Nonlinear Control

Instructor: Prof. Haithem Taha

Date: June 13th, 2023

Institution: University of California, Irvine

 $\overline{2}$

(Biological) Multi-Agent Systems

"Jointly beneficial interactions between members of different species." Pauli et al., 2015. Proc. R. Soc. B.

Pistol Shrimps and Gobies

https://www.nhm.ac.uk/discover/mutualism-examples-of-species-that-work-together.html **Honeyguides and Humans**

(Engineered) Multi-Agent Systems ³

Amazon Warehouses

https://spectrum.ieee.org/multi-robot-slam-icra2023 **Localization and Mapping**

https://www.aglaw.us/janzenaglaw/2020/7/16/is-your-farm-ready-for-the-swarm **Agriculture Processes**

Heterogeneity

 $5\overline{)}$

Agents in a Shared Workspace

Consider two agents coexisting within a shared workspace

- · Amphibious
- · Mobility depends on terriain

Rabbit in pond

Turtle on land

Q: What about if the rabbit and turtle worked together??

⁶ Terrain-Dependent Mobility Gain

Consider the terrain-dependent gain of agent i to be a function of spatial x position only, i.e., $\kappa_r(x_r)$ and $\kappa_t(x_t)$.

Two candidate functions which can capture the desired behavior are

Proximity Metric

Consider a proximity metric to distinguish the relative distance between agents to be a function of planar position states, i.e., $\chi(\boldsymbol{x}_r, \boldsymbol{x}_t)$ where $\boldsymbol{x}_r = [x_r, y_r]^\mathsf{T}$ and $\boldsymbol{x}_t = [x_t, y_t]^\mathsf{T}$.

Two candidate functions which can capture the desired behavior are

8 System Dynamics

We will consider dynamics in control affine form, i.e., $\dot{x} = f(x) + \sum_{j} g_j(x) u_j$, given as

 $\begin{bmatrix} \dot{\boldsymbol{x}}_r \ \dot{\boldsymbol{x}}_t \ \dot{\alpha} \end{bmatrix} = \begin{bmatrix} G_r(x_r) \ \alpha \chi(\boldsymbol{x}_r, \boldsymbol{x}_t) \cdot I_{d \times d} \ 0 \end{bmatrix} \boldsymbol{u}_r + \begin{bmatrix} \alpha \chi(\boldsymbol{x}_r, \boldsymbol{x}_t) \cdot I_{d \times d} \ G_t(x_t) \ 0 \end{bmatrix} \boldsymbol{u}_t + \begin{bmatrix} 0 \ 0 \ \kappa \end{bmatrix} v,$ $\boldsymbol{g}_r(\boldsymbol{x})$ $\boldsymbol{g}_t(\boldsymbol{x})$ $\boldsymbol{g}_{\text{collab}}$ where $d = \{1, 2, 3\}$ is the position states' dimension! $\overline{G_r(x_r)} = \kappa_r(x_r) \cdot \overline{I_{d \times d}} \succ 0$ is the rabbit's control gain $G_t(x_t) = \kappa_t(x_t) \cdot I_{d \times d}$ > 0 is the turtle's control gain $\frac{1}{2}\chi(\bm{x}_r,\bm{x}_t) \geq 0$ is the proximity metric quantifying the closeness between agents $i\kappa > 0$ is the control gain corresponding to collaboration strength $\mathbf{F}_{\mathbf{I}}^{\mathbf{I}}\mathbf{x}_r \in \mathbb{R}^d$, $\mathbf{x}_r \in \mathbb{R}^d$ are the rabbit and turtle (position) states, respectively $\frac{1}{2}\alpha$ distinguishes the difference between collaboration $(\alpha \neq 0)$ and closeness $(\alpha = 0)$.

Several Probing Questions

For simplicity, we will consider the case of $d=1$ (1-D position states), e.g., $x_r \in \mathbb{R}$ and $x_t \in \mathbb{R}$. Now, we will pose the following questions:

 $\mathbf{Q1}$: What happens when we start taking Lie brackets with our controlled dynamics vector fields?

Q2: Will the Lie bracket's control gain be larger than the original control gain? If yes, under what conditions does this hold?

Q3: How can the control gain obtained from taking the Lie Bracket be realized?

 \mathfrak{g}

 $x(\Delta t)$

 $-q$

10 Taking Lie Brackets of Vector Fields

Recall: the Lie bracket is defined as $[X, Y] = J_Y X - J_X Y$ where J_Y, J_X are $n \times n$ Jacobian matrices and X, Y are vector fields. $-f$ $x(2\Delta t)$

A1: Assume:
$$
\kappa_r(x_r) = \frac{1}{2}(\tanh(ax_r) + 1), \ \kappa_t(x_t) = 1 - \frac{1}{2}(\tanh(ax_t) + 1)
$$

$$
\chi(x_r, x_t) = \frac{1}{\gamma \sqrt{\pi}} \exp\left[-(\frac{(x_r - x_t)^2}{\gamma})^2\right]
$$

$$
\begin{aligned}\n\text{(a) } & \left[\boldsymbol{g}_t(\boldsymbol{x}), \boldsymbol{g}_{\text{collab}} \right] = J_{\boldsymbol{g}_{\text{collab}}} \boldsymbol{g}_t(\boldsymbol{x}) - J_{\boldsymbol{g}_t(\boldsymbol{x})} \boldsymbol{g}_{\text{collab}} \\
&= \begin{bmatrix}\n\frac{-(x - x t)^2}{\gamma^2} \\
\frac{\sqrt{\pi} \gamma}{\gamma} \\
0\n\end{bmatrix} \qquad \boldsymbol{g}_t(\boldsymbol{x}) = \begin{bmatrix}\n\frac{-(x - x t)^2}{\gamma^2} \\
\frac{1}{\gamma^2} - \frac{\alpha}{\gamma^2} - \frac{\gamma}{\gamma^2} - \gamma - \gamma \\
\frac{1}{\gamma^2} - \frac{1}{\gamma} \left(\tanh(a \cdot x_t) + 1 \right) \\
\frac{1}{\gamma^2} - \gamma - \gamma - \gamma - \gamma - \gamma - \gamma\n\end{bmatrix}\n\end{aligned}
$$

 \Rightarrow This Lie bracket does not help us gain more control authority.

 \cdot Similarily, we can compare $[\bm{g}_r(\bm{x}),\bm{g}_{\rm collab}]$ and $\bm{g}_r(\bm{x})$, but the result will be the same.

11 Taking Lie Brackets of Vector Fields (Continued)

 \Rightarrow This Lie bracket has the potential to help us gain more control authority!

Realization of Improved Control Authority $12₂$

A2: Improved control authority should only happen when $\chi(x_r, x_t) \neq 0$, so we assume $x_r = x_t$

$$
\Rightarrow \left[\mathbf{g}_t(\mathbf{x}),\mathbf{g}_r(\mathbf{x})\right] = \begin{bmatrix} \frac{a\alpha \text{sech}^2(ax_t)}{2\sqrt{\pi}\gamma} \\ \frac{a\alpha \text{sech}^2(ax_t)}{2\sqrt{\pi}\gamma} \\ 0 \end{bmatrix}, \ \mathbf{g}_t(\mathbf{x}) = \begin{bmatrix} \frac{\alpha}{\sqrt{\pi}\gamma} \\ 1 - \frac{1}{2}(\tanh(ax_t) + 1) \\ 0 \end{bmatrix}, \ \mathbf{g}_r(\mathbf{x}) = \begin{bmatrix} \frac{1}{2}(\tanh(ax_t) + 1) \\ \frac{\alpha}{\sqrt{\pi}\gamma} \\ 0 \end{bmatrix}
$$

For the turtle, let us determine when control gain would be larger for the Lie bracket vector field

$$
\frac{a\alpha \text{sech}^2(ax_t)}{2\sqrt{\pi}\gamma} \ge 1 - \frac{1}{2}(\tanh(ax_t) + 1) \quad \to \quad \left[\frac{\alpha}{\gamma}\right]_t \ge \frac{2\sqrt{\pi}(1 - \frac{1}{2}(\tanh(ax_t) + 1))}{a\text{sech}^2(ax_t)} = \frac{2\sqrt{\pi}\kappa_t(x_t)}{a\text{sech}^2(ax_t)}
$$

For the rabbit, let us determine when control gain would be larger for the Lie bracket vector field

$$
\frac{a\alpha \text{sech}^2(ax_r)}{2\sqrt{\pi}\gamma} \ge \frac{1}{2}(\tanh(ax_r) + 1) \quad \to \quad \left[\frac{\alpha}{\gamma}\right]_r \ge \frac{2\sqrt{\pi}(\frac{1}{2}(\tanh(ax_r) + 1))}{a\text{sech}^2(ax_r)} = \frac{2\sqrt{\pi}\kappa_r(x_r)}{a\text{sech}^2(ax_r)}
$$

as long as this inequality hold, the Lie bracket can improve control authority!

A3: Improved control authority (i.e., higher gain) may be achievable by flowing along the Lie bracket direction

$$
\phi \frac{-\bm{g}_r(\bm{x})}{\sqrt{t}} \circ \phi \frac{-\bm{g}_t(\bm{x})}{\sqrt{t}} \circ \phi \frac{\bm{g}_r(\bm{x})}{\sqrt{t}} \circ \phi \frac{\bm{g}_t(\bm{x})}{\sqrt{t}}
$$

13

Optimal Control Formulation

 $\min_{\bm{x}(\cdot), \ \bm{u}(\cdot)} \quad J = \int_0^1 \int_0^{t_f} \|\bm{u}(t)\|_2^2 \ dt \Big|_1^1$ Control Energy (Cost Function) s.t. $\mathbf{\dot{w}}(\bar{t}) = \mathbf{g}_r(\bar{x}(\bar{t}))\mathbf{u}_r(\bar{t}) + \mathbf{g}_t(\bar{x}(\bar{t}))\mathbf{u}_t(\bar{t}) + \mathbf{g}_{\text{collab}}v(\bar{t})$ System Dynamics (Constraint) Boundary Conditions (Constraint) $x_{\min} \leq x_r(t) \leq x_{\max}$, $x_{\min} \leq x_t(t) \leq x_{\max}$ Boxed Domain (Constraint) $y_{\min} \le y_r(t) \le y_{\max}, y_{\min} \le y_t(t) \le y_{\max}$ $\|\boldsymbol{u}(t)\|_{\infty} \leq \overline{u},$ Bounding Actuation (Constraint) where

 $\mathbf{x}_r(t) \in \mathcal{X}_r \subset \mathbb{R}^2$, $\mathbf{x}_t(t) \in \mathcal{X}_t \subset \mathbb{R}^2$, $\alpha \in \mathbb{R}$ $\boldsymbol{x}(t) = [\boldsymbol{x}_r(t), \boldsymbol{x}_t(t), \alpha(t)]^\mathsf{T} \in \mathcal{D} \subset \mathbb{R}^5$

 $\boldsymbol{u}(t) = [\boldsymbol{u}_r(t), \boldsymbol{u}_t(t), v(t)]^\mathsf{T} \in \mathcal{U} \subset \mathbb{R}^5$

Q: How to solve this optimal control problem?

 \Rightarrow Using an open-source software tool for numerical optimization and optimal control!

14 **Simulation Settings**
Consider the 2-D domain to be compact, and defined as $D = D_{\text{water}} \cup D_{\text{land}}$

Terrain-Dependent Proportional Gains: $\kappa_r(x_r) = \frac{1}{2}(\tanh(ax_r) + 1) \in [0.05, 1]$ $\kappa_t(x_t) = 1 - \frac{1}{2}(\tanh(ax_t) + 1) \in [0.05, 1]$

Simulation Settings: \cdot Time Horizon = 30 s \cdot Sampling Time = 0.1 s $\cdot \mathbf{D} = [-2,2] \times [-2,2]$ $([x_{\min}, x_{\max}] \times [y_{\min}, y_{\max}])$ $\cdot \sqrt{\|u(t)\|_{\infty}} \leq \overline{u} = 1$ m/s $\mathbf{F} = \mathbf{F} = \mathbf$ \cdot FC : $x_f = x_r(t_f) = x_t(t_f) = [1, 1]^T$ \cdot Individual: $\alpha(t) = 0 \ \forall t$ To Activate \cdot Collaboration: $\alpha(0) = \alpha(t_f) = 0$ Collaboration **Proximity Function:** Let $\chi'(\boldsymbol{x}_r, \boldsymbol{x}_t) = \frac{1}{\gamma \sqrt{\pi}} \exp \left[-(\frac{z(\boldsymbol{x}_r, \boldsymbol{x}_t)}{\gamma})^2\right]$ $\rightarrow \chi(\boldsymbol{x}_r, \boldsymbol{x}_t) = \frac{\chi'(\boldsymbol{x}_r, \boldsymbol{x}_t)}{\|\chi'(\boldsymbol{x}_r, \boldsymbol{x}_t)\|_2}$

15 Case Study 1: Individual Trajectory

16 Case Study 1: Individual Trajectory

Optimization Solver Run-Time $= 6.76$ seconds Simulation Time $=$ 30 seconds

17 Case Study 2: Collaborative Trajectory

18 **Case Study 2: Collaborative Trajectory**

Simulation Time $=$ 30 seconds

¹⁹ Case Study 2: Collaborative Trajectory (Continued)

Collaboration is feasible when the position states lie on the characteristic lines of $x_r(t) = x_t(t)$ and $y_r(t) = y_t(t)!$

Thank you for listening!