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ABSTRACT

A lower bound for the error covariance of radio simultaneous localization and mapping (SLAM) with terrestrial signals
of opportunity (SOPs) is derived. The following problem is considered. An unmanned aerial vehicle (UAV) equipped
with an on-board receiver extracts psuedorange measurements from SOP towers with unknown emitter positions and
SOP towers with known emitter positions. Each SOP tower contains dynamic, stochastic clock error states (bias
and drift). An extended Kalman filter (EKF) is employed to fuse the psuedorange measurements to simultaneously
localize the UAV and SOP towers, together with estimating the difference between the receiver’s and each SOP’s
clock bias and clock drift terms. It is shown that the so-called radio SLAM base case is observable, in which a
UAV with imperfect knowledge about its initial states is navigating in an environment containing one unknown SOP
tower and two partially known SOP towers (i.e., towers whose position are known, but clock bias and drift states are
unknown). A lower bound on the EKF estimation error covariance matrix is derived and demonstrated numerically.
Monte Carlo simulation results are presented demonstrating the derived lower bound for a UAV navigating in a
radio SLAM fashion without global navigation satellite systems (GNSS) signals. Experimental results are presented
for a UAV with an initial estimate of its position making pseudorange measurements to two partially known and
one unknown cellular SOP. The UAV achieves a two-dimensional (2-D) position root-mean squared error (RMSE) of
10.76 m over a trajectory of 600 m.
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I. INTRODUCTION

Autonomous vehicles typically depend on global navigation satellite systems (GNSS) for their on-board navigation
system. Alarmingly, this reliance is not sufficient to provide resilient and precise vehicle positioning all the time.
Specifically, there are GNSS-challenged environments such as deep urban canyons [1], indoors [2], and those under
malicious attacks (e.g., spoofing [3] or jamming [4]), which require an alternative to GNSS for safe and reliable
navigation. These alternative approaches include the use of sensors with complementary sensing modalities (e.g.,
lasers [5], ultrasonics [6], cameras [7], and inertial measurement units [8]). Another approach is radionavigation-
based, which utilizes ambient signals of opportunity (SOPs) in the environment [9], such as AM/FM radio [10, 11],
cellular [12–15], digital television [16, 17], low Earth orbit (LEO) satellites [18–21], and WiFi [22, 23]. These signals
were not intended for position, navigation, and timing (PNT) purposes; nevertheless, the literature has shown that
they can be exploited for such purposes. SOPs are abundant, are transmitted in a wide range of frequencies, are
more powerful than GNSS signals, and are geometrically diverse. These attributes address the inherent limitations
of GNSS signals. However, unlike the states of a GNSS space vehicle, SOP states are typically unknown during
navigation which requires them to be estimated on the fly. This is similar to the simultaneous localization and
navigation (SLAM) estimation problem in robotics [24, 25]. In traditional SLAM, an agent constructs a map of the
environment while simultaneously localizing itself within this map. Typically, an environment is composed of static
landmarks, e.g., walls, posts, and corners. However, unlike traditional SLAM, SOPs are mapped as spatio-temporal
landmarks composed of dynamic, stochastic states (i.e., clock error terms). The problem of simultaneously mapping
ambient SOPs while localizing a vehicle-mounted receiver using PNT information is referred to as radio SLAM
[26,27].

Past literature in radionavigation considered fundamental questions pertaining to deterministic nonlinear observ-
ability of collaborative opportunistic navigation [28], stochastic observability of radio SLAM [29], radio SLAM filter
boundedness [30], radio SLAM performance [31], motion planning in radio SLAM environments [32], and communi-
cation and information fusion strategies for collaborative radio SLAM [33, 34]. Nevertheless, lower bounds for the
radio SLAM problem have not been established yet. These bounds are of considerable importance as they establish
the bounds on the achievable performance in an unknown or a partially known SOP environment. This paper is a
first attempt at addressing this. Previous work has derived expressions for calculating uniform bounds of the estima-
tion error covariance by ensuring uniform controllability and uniform observability are satisfied simultaneously [35].
Furthermore, other work established performance bounds for the traditional SLAM problem [36–41]. However, these
bounds do not apply to the problem considered in this paper, since radio SLAM utilizes a different measurement
model and the state space contains dynamic, stochastic landmark states.

This paper derives a lower bound for the estimation error covariance of an extended Kalman filter (EKF)-based
radio SLAM framework. The following problem is considered. An unmanned aerial vehicle (UAV) equipped with an
on-board receiver extracts psuedorange measurements from SOP towers with unknown emitter positions and SOP
towers with known emitter positions. Each SOP tower contains dynamic, stochastic clock error states which are
estimated as the difference between the receiver’s and each SOP’s clock bias and clock drift terms. This EKF fuses
these measurements together for simultaneous receiver and SOP tower localization and clock error estimation.

The remainder of this paper is organized as follows. Section II describes the receiver and SOP dynamics models,
modified clock error states, and the EKF model. Section III contains a brief observability analysis pertaining to
the radio SLAM base case (i.e., UAV with imperfect knowledge of its initial states using signals from two partially
known cellular SOPs and an unknown cellular SOP). Section IV derives a lower bound for the radio SLAM problem
as a function of time and number of partially known and unknown SOPs, which is subsequently demonstrated with
simulation results. Section V presents experimental results conducted on a UAV performing radio SLAM without
GNSS signals. Section IV contains concluding remarks.

II. MODEL DESCRIPTION

This section presents the dynamics model for a UAV-mounted receiver and a terrestrial SOP tower, the modified
clock error states, and the EKF model. Only the UAV’s two-dimensional (2-D) position is considered, as an altimeter
or barometric pressure sensor can be used to estimate the UAV’s altitude.



A. Receiver Dynamics Model

The UAV-mounted receiver states consist of the 2-D positions rr = [xr, yr]
T
, 2-D velocities ṙr = [ẋr , ẏr]

T
, and clock

error states xclk,r = [cδtr, c ˙δtr]
T where δtr(k) and ˙δtr(k) are the receiver’s clock bias and drift, respectively, and c

is the speed of light. The receiver’s position and velocity states are assumed to adhere to a velocity random walk
model [42]. Therefore, the UAV-mounted receiver can be modeled as the following discrete-time model

xr (k + 1) = Fr xr(k) +wr(k), k = 0, 1, 2, ...,

where

xr = [rT

r , ṙT

r , xT

clk,r]
T,

Fr =





I2×2 T I2×2 02×2

02×2 I2×2 02×2

02×2 02×2 Fclk



 , Fclk =

[
1 T

0 1

]

,

where wr is the receiver’s process noise, which is modeled as a discrete-time zero-mean white noise sequence with
covariance Qr = diag[Qpv,Qclk,r], with

Qpv =
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, Qclk,r = c2

[

Sw̃δtr
T + Sw̃ ˙δtr

T 3

3 Sw̃ ˙δtr

T 2

2

Sw̃ ˙δtr

T 2

2 Sw̃ ˙δtr
T

]

,

where T is the sampling time and q̃x and q̃y are the continuous-time x and y acceleration noise power spectral
densities. The terms Sw̃δtr

and Sw̃ ˙δtr
are the clock bias and drift process noise power spectra, which can be related

to the power-law coefficients,
{
hα,si

}2

α=−2
; laboratory experiments have shown that the power spectral density of

the fractional frequency deviation of an oscillator from nominal frequency to be appropriately approximated by
Sw̃δtr

≈ h0,r

2 and Sw̃ ˙δtr
≈ 2π2h−2,r [43].

B. SOP Dynamics Model

Each SOP is assumed to emanate from a spatially-stationary terrestrial transmitter. The states will consist of 2-
D positions rsi = [xsi , ysi ]

T and clock error states xclk,si = [cδtsi , c ˙δtsi ]
T, where δtsi(k) and ˙δtsi(k) are the ith

SOP’s clock bias and drift, respectively, with i = 1, . . . ,M , where M , n +m is the total number of SOPs in the
environment with n being the number of partially known SOPs and m being the number of unknown SOPs. The ith

terrestrial SOP’s discretized state-space model can be described by

xsi (k + 1) = Fs xsi(k) +wsi(k), k = 0, 1, 2, ...,

where

xsi = [rT

si
, xT

clk,si ]
T

Fs = diag[I2×2,Fclk]

where wsi is the ith terrestrial SOP’s process noise, modeled as a discrete-time zero-mean white noise sequence with
covariance Qsi = diag[02×2,Qclk,si ]. The Qclk,si covariance matrix is identical to Qclk,r, except that Sw̃δtr

and Sw̃
δ̇tr

are replaced with SOP-specific spectra Sw̃δt,s,i
and Sw̃

δ̇t,s,i
. These spectra terms are modeled similarly to the receiver

spectra but with SOP-specific values h0,si and h−2,si .

C. Modified Clock Error States

Estimating the individual clock error terms for the receiver and each respective SOP could yield a stochastically
unobservable system with diverging estimation error variances [29]. Thus, the modified clock bias and clock drift
states are redefined to be the difference between the receiver’s and SOPs’ clock error terms, according to

cδti , cδtr − cδtsi , i = 1, . . . ,M.

c ˙δti , c ˙δtr − c ˙δtsi



Now, the clock states are given as xclk,i ,
[
cδti, cδ̇ti

]T
, where the SOP state vector is redefined as xsi =

[
rsi , xclk,i

]T
.

The new clock dynamics are given by

xclk,i(k + 1) = Fclkxclk,i(k) +wclk,i(k), k = 0, 1, 2, . . . ,

where wclk,i is the modified clock error state’s process noise, which is modeled as a discrete-time zero-mean white
noise sequence with covariance Qclk,i = Qclk,r +Qclk,si .

D. EKF Model

The EKF estimates the UAV-mounted receiver’s position and velocity, n SOP tower’s modified clock error states,
and m SOP tower’s position and modified clock error states, namely

x , [rT

r , ṙT

r , xT

clk,1, . . . ,x
T

clk,n, xT

sn+1
, . . . , xT

sM
]T.

Note that x may be expressed as x = Tx′, where x′ is the non-modified EKF state vector and T is some permutation
matrix which can be readily calculated for state transformation. The pseudorange measurements made by the receiver
on the ith SOP tower is related to the receiver’s and SOPs’ states by

zsi(k) =
∥
∥rr(k)− rsi

∥
∥
2
+ cδti(k)

︸ ︷︷ ︸

hi[x(k)]

+vsi(k), i = 1, . . . ,M, (1)

where ‖·‖2 is the Euclidean norm and vsi is the measurement noise, which is modeled as a zero-mean white Gaussian
sequence with variance σ2

s,i. It is assumed that the measurement noise is uncorrelated across the different SOPs.

III. BASE CASE OBSERVABILITY ANALYSIS

This section shows that the radio SLAM base case, defined as a UAV with imperfect knowledge of its initial states in
an environment with n = 2 partially known (mapped) and m = 1 unknown SOP towers, to be observable. Moreover,
this analysis shows the minimum number of SOP towers needed to guarantee an observable system in an arbitrary
environment. This is achieved by studying the rank of the l-step observability matrix. The following assumptions are
necessary to ensure the l-step observability matrix does not lose rank due to receiver trajectory or singular geometry.

A1. The terrestrial SOPs are not colocated
A2. The receiver is not stationary and does not move along a trajectory collinear to any terrestrial SOP line-of-

sight vectors.
A3. The receiver’s distance to each SOP is bounded at all time, i.e., dmin < ‖rr(k)− rsi‖2 < dmax, ∀ k > 0, and

∀ i = 1, · · · ,M , where dmin is the minimum distance to the SOP (to ensure the UAV does not ”exactly” fly
over the SOP) and dmax is the maximum distance to the SOP (to ensure the UAV does not fly very far from
the SOPs, making their geometry in the “far-field,” which appears as if they are collocated).

A. Theoretical Background: Observability of Linear and Nonlinear Systems

Consider the discrete-time linear time-varying (LTV) system

x(k + 1) = F(k)x(k) + Γ(k)u(k) (2)

y(k) = H(k)x(k)

where x ∈ R
nx is the system’s state vector, u ∈ R

nu is the system’s input vector, and y ∈ R
ny is the system’s mea-

surement vector. The observability of a LTV system is typically determined by studying the rank of the observability
Grammian or the observability matrix. The following theorem states a necessary and sufficient condition for LTV
observability through the l-step observability matrix [44]. Theorem III.1: The discrete-time LTV system is l-step
observable if and only if the l-step observability matrix, defined as

O(k, k + l) ,










H(k)
H(k + 1)Φ(k + 1, k)
H(k + 2)Φ(k + 2, k)

...
H(k + l− 1)Φ(k + l − 1, k)










(3)



is full rank, i.e., rank
[
O(k, k+ l)

]
= nx. The matrix function Φ(k, j) is the discrete-time transition matrix, which is

defined as

Φ(k, j) ,

{

F(k − 1)F(k − 2) · · ·F(j), k ≥ j + 1

I, k = j

This observability analysis can be extended to nonlinear systems by linearizing the state transition and observation
models to obtain F(k), Γ(k), and H(k), which establishes observability results only valid locally. More generally,
a nonlinear system may be characterized as observable, locally observable, weakly observable, or locally weakly
observable [45].

B. Observability Analysis

This analysis looks to classify observability for a discrete-time LTV system by studying the rank of the l-step
observability matrix. The state vector and dynamics matrix for the base case is defined as

x , [rT

r , ṙT

r , xT

clk,1, xT

clk,2, xT

s3
]T, (4)

F =









I2×2 T I2×2 02×2 02×2 02×4

02×2 I2×2 02×2 02×2 02×4

02×2 02×2 Fclk 02×2 02×4

02×2 02×2 02×2 Fclk 02×4

04×2 04×2 04×2 04×2 Fs3









. (5)

The linearized measurement model yields the following observation Jacobian matrix

ξi(k) ,
rr(k)− rsi

‖rr(k)− rsi‖2
, ∀i = 1, 2, 3

Hri(k) = [ξTi (k), 01×2], Hsi(k) = [−ξTi (k), hclk]
T, hclk = [1, 0],

H(k) =





Hr1(k) hclk 01×2 01×4

Hr2(k) 01×2 hclk 01×4

Hr3(k) 01×2 01×2 Hs3(k)



 . (6)

The l-step observability matrix O(k, k + l) is of dimension l · (n +m) × 4 + 2n+ 4m. One necessary condition for
the observability matrix to be full rank is that l · (n + m) ≥ 4 + 2n + 4m, i.e., the UAV makes measurements at
l epochs to the M terrestrial SOP towers. Symbolic computations done in software found the l-step observability
matrix to achieve full rank when l ≥ 4 for the radio SLAM base case. Further generalized, a given system will always
be l-step observable with n ≥ 2 and m ≥ 1 for l ≥ 4. Note, this result is the same as the l-step criteria found in the
observability analysis for a UAV performing opportunistic navigation [30]. The results of this study are valid only
locally and deterministically, i.e., no process or measurement noise and no initial uncertainty. However, these result
can be extended to stochastic systems by introducing noise to the position unit vectors ξ′i(k) = ξi(k) +wξi(k). By
invoking the stated assumptions A1 - A3, the addition of process noise will not change the structure nor the rank of
H(k). Thus, the deterministic observability analysis still holds for a system with noise [46].

IV. RADIO SLAM PERFORMANCE ANALYSIS

This section derives a lower bound for the radio SLAM performance as a function of time and partially known and
unknown SOP towers in the environment. The m unknown SOPs means that one has no knowledge of the location
or clock error states. The n partially known SOPs means that one has knowledge of the location but the clock error
states are unknown. The radio SLAM performance bound yields a bound on the uncertainty with which a UAV
can localize itself and map the environment while estimating the clock error terms over a finite-time horizon. The
following assumptions are necessary to ensure that uniform controllability and observabililty conditions are satisfied
simultaneously.

A4. The environment contains a UAV-mounted receiver with imperfect knowledge of its initial states with n ≥ 2
partially known SOP towers and m ≥ 1 unknown SOP towers, i.e., the necessary observability condition
l ≥ 4+2n+4m

n+m
is satisfied.

A5. The m ≥ 1 unknown SOP spatial states’ process noise terms contain a small non-zero value (ǫ ≪ 1) to
ensure the covariance is a positive-definite matrix.



A. Studied Scenario

The following motivating scenario is considered. A UAV-mounted receiver is flying in a environment with initial
access to GNSS signals from which an imperfect initial state estimate is calculated. GNSS signals became unavailable.
Subsequently, the receiver produces pseudorange measurements from ambient terrestrial SOPs. The pseudorange
measurements are fused through an EKF to estimate the states of both the (partially known and unknown) SOPs
and UAV.

B. Boundedness of EKF Estimation Error Covariance

A uniform lower bound on the state covariance for a LTV stochastic system is valid when both uniform controllability
and observability are satisfied simultaneously [?, 35]. Put another way, both the controllability and observability
Grammians must be full rank (e.g., positive definite). These EKF estimation error covariance bounds have the
following form

(
Ok,k−l + C

−1
k,k−l

)−1
� Pk, (7)

where

Ck,k−l =

k−1∑

i=k−l

Φ(k, i+ 1)QΦ(k, i+ 1)T and Ok,k−l =

k−1∑

i=k−l

Φ(i, k)TH(i)TR̄−1H(i)Φ(i, k) (8)

are the controllability and observability Grammians, respectively. To simplify the upcoming derivation, the mea-
surement noise covariance is assumed to be R̄ , σ2IM×M , where σ , max{σs1 , . . . , σsm}.

C. Theoretical Lower Bound on the EKF Estimation Error Covariance

The controllability and observability Grammians will be constructed at l = 4 epochs to the M terrestrial SOP towers
based on the observability analysis in Section III. The Grammians matrices were computed to be

Ck,k−4 =

k−1∑

i=k−4

Φ(k, i+ 1)QΦ(k, i+ 1)T =

4∑

i=1

Fi−1Q
(
Fi−1

)T

Ok,k−4 =
1

σ2

k−1∑

i=k−4

Φ(i, k)TH(i)TH(i)Φ(i, k) =
1

σ2

4∑

i=1

(
F−i

)T
H(k − i)TH(k − i)F−i

The controllability Grammian is constructed with linear-time invariant (LTI) matrices Q and F. Thus, the control-
lability Grammian Ck,k−4 is a constant matrix which is a function of the covariance Q. The observability Grammian
matrix is constructed with LTI matrix F and LTV matrix H(k)TH(k). Thus, the observabililty Grammian is a
function of the observation Jacobian H(k)TH(k). Therefore, the EKF estimation error bound defined in (7) is de-
pendent on finding a real number ᾱ > 0 such that Ok,k−4 � ᾱI. The ᾱ constant can be defined as the trace of
the observability Grammian. A tighter upper-bound on the observability Grammian can be established by finding
the maximum eigenvalue, but this is a difficult task since the observability Grammian is a LTV matrix. Therefore,
the “looser” upper-bound is considered by defining ᾱ to be the trace, rather than the maximum eigenvalue, of the
observability Grammian. The trace is defined as the sum of all eigenvalues, i.e., Tr[Ok,k−4] =

∑nx

j=1 λj where nx

is the number of estimated states. Alternatively, the trace is defined to be the sum of the elements along the main
diagonal of a matrix.

Ok,k−4 � Tr(Ok,k−4)
︸ ︷︷ ︸

ᾱ

I, where Tr(Ok,k−4) =
1

σ2

nx∑

i=1

[Ok,k−4]i,i (9)

(ᾱI+ C
−1
k,k−4) � (Ok,k−4 + C

−1
k,k−4)

⇒ (ᾱI+ C
−1
k,k−4)

−1 � (Ok,k−4 + C
−1
k,k−4)

−1 � Pk (10)



Furthermore, the observability Grammian’s trace, i.e., ᾱ = Tr(Ok,k−4), is calculated for the radio SLAM base case

with l ≥ 4+2n+4m
n+m

= 4+2(2)+4(1)
3 = 4. The considered scenario makes pseudorange measurements at l = 4 epochs to

the M = 3 terrestrial SOP towers in the environment. Defining matrix Bi = H(k − i)F−i,

Tr(Ok,k−4) =
1

σ2

4∑

i=1

Tr(BT

i Bi) =
1

σ2

4∑

i=1

nx∑

j=1

||bj ||
2
2 (11)

where bj ∀j = 1, . . . , nx are the columns of matrix Bi. The dynamics matrix has a Jordan form. Thus, it can be
written as the summation of an identity matrix and an upper triangle hollow matrix which is only a function of
the clock sampling time T , i.e, F = I + FT . It can be shown that FT is a nilpotent matrix such that Fi

T = 0, for
i ≥ 2. Therefore, the inverse of the dynamic propagation matrix can be calculated as F−1 = I − FT . Similarly, it
can be shown that F±i = I ± iFT . These dynamics matrix properties are useful in characterizing the trace of the
observability Grammian, as discussed in the following

Bi = H(k − i)F−i

= H(k − i)− iH(k − i)FT

=





ξT1 (k − i) −iTξT1 (k − i) [1,−iT ] 01×2 01×2 01×2

ξT2 (k − i) −iTξT2 (k − i) 01×2 [1,−iT ] 01×2 01×2

ξT3 (k − i) −iTξT3 (k − i) 01×2 01×2 −ξT3 (k − i) [1,−iT ]



 ,

⇒ Tr(BT

i Bi) =

nx∑

j=1

||bj ||
2
2 = (1 + i2T 2)

M∑

j=1

(1 + ||ξj ||
2
2) + ||ξ3||

2
2

The above results can be generalized for M SOP towers where m of them are unknown and n of them are partially
known. It should be noted that ||ξj ||2 = 1 for each SOP tower; as it is defined as the normalized distance between
the receiver and each SOP tower. This result can be generalized to the following with m unknown SOPs and n

partially known SOPs

Tr(BT

i Bi) =

nx∑

j=1

||bj ||
2
2 = (1 + i2T 2)

M∑

j=1

(1 + ||ξj ||
2
2) +

m∑

j=1

||ξj ||
2
2 = 2M(1 + i2T 2) +m

Finally, the trace of the observability Grammian for the l epochs that have been taken into account can be calculated.

Tr(Ok,k−l) =
1

σ2

l∑

i=1

Tr(BT

i Bi)

=
l

σ2

[
(2M +m) +MT 2 (l + 1)(2l+ 1)

3

]
, ᾱ(n,m, σ2, T, l) (12)

The constant value ᾱ calculated in (12) upper-bounds the observability Grammian where ᾱ is a function of sampling
time, partially known and unknown SOP towers, measurement noise, and l-step. Now, the ᾱ constant is used to
construct the linear time-invariant estimation error covariance with minimal uncertainty based on (10).

PLB =
(
ᾱI+C−1

k,k−l

)−1

This uniform lower bound on Pk is valid with assumptions A1 − A5 to simultaneously guarantee the necessary
uniform controllability and uniform observability conditions for estimation error covariance matrix boundedness.

D. Simulation Results

This subsection presents simulation results demonstrating the derived theoretical lower bound for the radio SLAM
base case. The UAV is flying at a fixed altitude with velocity random walk dynamics. During the flight, the UAV will
draw and fuse pseudorange measurements obtained from M = 3 SOP towers detected within a local neighborhood
of the UAV. The simulation settings are summarized in Table I.



TABLE I

Simulation Settings for the Receiver and each SOP for Radio SLAM

Parameter Value

{n,m} {2, 1}

xr(0|0) [0, 50, 15,−1, 100, 10]T

Pr(0|0) diag[25, 25, 9, 9, 30× 103, 3× 103]

x̂r(0|0) ∼ N [xr(0|0),Pr(0|0)]

rsi(0) ∼ [U [−100, 1000], U [−300, 300]]
T

{xsi(0)}
3
i=1

[
rT

si
, 1, 0.1

]T

Ps(0|0) (103) · diag[1, 1, 30, 3]

{x̂si(0|0)}
3
i=1 ∼ N [xsi(0),Ps(0|0)]

{Pclk,i(0|0)}
3
i=1 (103) · diag[30, 3]

{h0,r, h−2,r}
{
9.4× 10−20, 3.8× 10−21

}

{h0,si , h−2,si}
3
i=1

{
8.0× 10−20, 4.0× 10−23

}

q̃x, q̃y 0.1 m2/s3
{
σ2
si

}3

i=1
25 m2

T 0.1 s

First, results highlighting the uniform estimation performance as a function of unknown SOPs are shown in Fig.
1. To ensure observability, n = 2 partially known SOPs are assumed to be known while the m unknown SOPs are
varied from 1 to 50 in increments of two. The performance metric used is the A-optimality, which is proportional
to the average variance of the estimates [47], given by the trace of the estimation error covariance. It is important
to note how the average variance increases as more unknown SOPs are included into the environment. Knowledge
of this performance plot can motivate performance-based design or transmitter selection when there is uncertainty
about the environment.

Fig. 1. Uniform estimation performance as a function of unknown SOPs using the A-optimality criteria, i.e., Tr[PLB].

Next, Monte Carlo (MC) simulations with 1000 realizations were conducted to demonstrate the uniform lower bound
on the EKF estimation error covariance. The process and measurement noise, initial state estimates, and the SOP



tower locations were randomized for each MC realization. Fig. 2(a) displays the 1σ bounds of P(k|k) for the UAV and
unknown SOP compared to the derived uniform lower bound. Fig. 2(b) displays an eigenvalue point cloud verifying
P (k|k) � PLB. It can be seen that, the minimum eigenvalue of the covariance’s difference, i.e., λmin[P(k|k)−PLB]
will always be greater than or equal to zero at each time step for every MC realization.

(a) 1σ bounds for localized UAV and unknown SOP

(b) Minimum eigenvalue point-cloud

≈ 7:5 · 10
−4

UAV Unknown SOP

Fig. 2. MC simulation results for 1000 realizations. (a) 1σ bounds for the EKF estimation error covariance matrix compared with
theoretical lower bound. (b) Minimum eigenvalue point cloud verifying P (k|k) � PLB.

V. EXPERIMENTAL RESULTS

A UAV field experiment was conducted in Mission Viejo, CA, USA, to demonstrate the estimation error trajectories
and performance for the radio SLAM base case. This section presents the experimental hardware and software setup
as well as the radio SLAM results using only pseudorange measurements from M = 3 SOP towers in the environment.

A. Hardware Setup

The hardware setup for the conducted experiment is shown in Fig. 3. A DJI Matrice 600 drone was equipped with
a National Instrument (NI) universal software radio peripheral (USRP)-2955 to sample cellular long-term evolution
(LTE) signals at four different carrier frequencies. LTE carrier frequencies 1955, 2145, 2125, and 739 MHz were used
for this experiment which are allocated to USA operators AT&T, T-Mobile, and Verizon. The sampling rate was set
to 10 MSps and the sampled LTE signals were recorded on a laptop. A Septentrio AsteRx-i V was used to estimate the



position and orientation of the drone which was used as the ground truth. Furthermore, the Spetentrio was equipped
with a dual antenna multi-frequency GNSS receiver with RTK and a Vectornav VN-100 micro electromechanical
systems (MEMS) inertial measurement unit (IMU).

LTE antennas

Laptop

USRP

Multi-frequency
AsteRx-i V GNSS antennas AsteRx-i V GNSS

receiver with IMUBattery

DJI Matrice 600

MATLAB-based
Filter

MATRIX
LabVIEW-based SDR

receiver with IMU

Fig. 3. Experiment hardware setup.

The terrestrial SOP towers’ cell IDs and their corresponding carrier frequencies are presented in Table II. The
sampled LTE signals were processed offline using the LTE software-defined radio (SDR) proposed in [48]. The
resulting measurements were used to simultaneously localize the UAV-mounted receiver and unknown SOP tower
while estimating all unknown clock error terms via the radio SLAM framework.

TABLE II

eNodeBs’ characteristics

Cell ID Carrier frequency (MHz)

78 2145

104, 352 1955

308, 358, 224, 58, 354 2125

492, 5, 27 739

B. Software Setup

The UAV’s and SOP towers’ heights were assumed to be known for the entire duration of the experiment. Therefore,
this is a 2-D radio SLAM problem consistent with the observability analysis and performance analysis conducted in
Section III and Section IV, respectively. The EKF-based radio SLAM filter was initialized with state estimates and
corresponding estimation error covariance given by the following

x̂(0|0) = [0, 0, 3.42, 0.81, −539.32, 0.16, −2237.52, 0.55, −150.71, 91.32, −143.11, 0.07] ,

Pr(0|0) = diag
[
4, 4, 1, 1, 30× 106, 3× 103

]
,

Pclk,n(0|0) = diag
[
30× 106, 3× 103

]
, n = 1, 2

Ps3(0|0) = diag
[
7× 104, 7× 104, 30× 106, 3× 103

]

where P(0|0) was initialized with the initial EKF estimation error covariance matrices listed above. The initial
modified clock error terms were solved for by using the initial set of cellular transmitter pseudoranges according to

cδti(0) = zsi(0)− ‖rr(0)− rsi‖2, i = 1, 2, 3

c ˙δti(0) =
c
(
δti(1)− δti(0)

)

T
,



where δti(1) = zsi(1)− ‖rr(1)− rsi‖2 is the modified clock bias at time step k = 1. The receiver’s clock covariance
Qclk,r was set to correspond to a typical temperature-compensated crystal oscillator (TCXO) with h0,r = 9.4×10−20

and h−2,r = 3.8 × 10−21. The ith SOP tower’s clock covariance Qclk,si was set to correspond to a typical oven-
controlled crystal oscillator (OCXO) with h0,si = 8×10−20 and h−2,si = 4×10−23. The UAV’s position and velocity
states were assumed to evolve according to velocity random walk dynamics where T = 0.01 s is the sampling time
and q̃x = 1 m2/s3 and q̃y = 20 m2/s3 is the x and y continuous-time acceleration noise spectra whose values were
found empirically. The measurement noise was assumed to have a covariance R = σ2 · I3×3, where σ2 = 30 m2 was
found empirically.

C. Radio SLAM Results

The UAV traversed a trajectory of 600 m over 175 seconds, while listening to 11 terrestrial SOP towers in the
surrounding environment which were mapped prior to conducting the experiment. Although, for the purposes of
the radio SLAM case study, only M = 3 SOP towers were considered with n = 2 partially known SOPs and m = 1
unknown SOP. The UAV-mounted receiver’s estimate errors were computed with respect to the RTK-IMU trajectory
where the resulting estimation error trajectories and corresponding ±1σ of the UAV’s and the unknown SOP tower’s
states are shown in Fig. 4. Note, only the ±1σ bounds are shown to highlight the radio SLAM base case estimation
performance.

Estimation Error ±1σ

Fig. 4. Radio SLAM base case experimental results showing the estimation error trajectories and corresponding ±1σ bounds.

The experiment layout contains three cellular SOP tower locations and the true and estimated UAV trajectories as
shown in Fig. 5(a). A comparison between the estimated UAV trajectory and the RTK-IMU solution trajectory
is shown in Fig. 5(b). The UAV achieved a position root-mean squared error (RMSE) of 10.76 m after traversing
the full trajectory. The north-east 95th-percentile initial and final uncertainty ellipses corresponding to SOP tower 3
have a noticeable reduction in size by the end of the experiment. Moreover, the initial 2-D SOP tower position error
was 41.57 m, but was eventually reduced to a final 2-D SOP tower position error of 6.62 m, as shown in Fig. 5(c).
Furthermore, it should be noted that the radio SLAM error trajectories and performance results were all consistent
with the theory and simulation results presented in Section IV.

VI. CONCLUSION

This paper derived a lower bound for the radio SLAM framework. An observability analysis of a UAV with imperfect
knowledge of its initial state with two partially known and one unknown SOP towers in the environment (i.e., base
case) was assessed and found to be observable for l ≥ 4 time-steps. Furthermore, a lower bound for radio SLAM’s
EKF estimation error covariance was derived. Through both single-realization and MC simulations, the lower bound
was demonstrated numerically. The experimental results showed a UAV navigating via radio SLAM with signals
from two partially known cellular SOPs and one unknown cellular SOP. The achieved results demonstrated bounded
localization errors and bounded estimation error variance for 175 seconds without GNSS, in which a trajectory of
600 m was traversed with a position RMSE of 10.76 m.



Tower Location
Final Estimated

Tower Location
True

True Tower Locations

0 km 1 km

SOP 1

SOP 3

SOP 2

(c)

Initial Tower
Uncertainty

Final Tower
Uncertainty

(b) Position RMSE: 10.76 m
Total Traversed Trajectory: 600 m

SOP Final Error: 6.62 m
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RTK-IMU Solution
Radio SLAM

Fig. 5. (a) Experiment layout containing the true locations of each SOP tower and the two UAV navigation solutions. (b) UAV trajectory
comparison between the RTK-IMU navigation solution (red) and radio SLAM (blue). (c) Initial and final position estimates with their
associated north-east uncertainty ellipse for SOP tower 3. Map data: Google Earth.

ACKNOWLEDGMENT

This research was supported in part by the Office of Naval Research (ONR) under Grant N00014-19-1-2613 and
Grant N00014-19-1-2511, in part by the National Science Foundation (NSF) under Grant 1929965, and in part by
Sandia National Laboratories under the Laboratory-Directed Research and Development (LDRD) award.

References

[1] N. Zhu, J. Marais, D. Betaille, and M. Berbineau, “GNSS position integrity in urban environments: A review of literature,” IEEE
Transactions on Intelligent Transportation Systems, vol. 19, no. 9, pp. 2762–2778, September 2018.

[2] A. Broumandan, J. Nielsen, and G. Lachapelle, “Indoor GNSS signal acquisition performance using a synthetic antenna array,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 47, no. 2, pp. 1337–1350, April 2011.

[3] M. Psiaki and T. Humphreys, “GNSS spoofing and detection,” Proceedings of the IEEE, vol. 104, no. 6, pp. 1258–1270, June 2016.
[4] D. Borio, F. Dovis, H. Kuusniemi, and L. Presti, “Impact and detection of GNSS jammers on consumer grade satellite navigation

receivers,” Proceedings of the IEEE, vol. 104, no. 6, pp. 1233–1245, February 2016.
[5] A. Soloviev, “Tight coupling of GPS, INS, and laser for urban navigation,” IEEE Transactions on Aerospace and Electronic Systems,

vol. 46, no. 4, pp. 1731–1746, October 2010.
[6] M. Moussa, A. Moussa, and N. El-Sheimy, “Multiple ultrasonic aiding system for car navigation in gnss denied environment,” in

Proceedings of IEEE/ION Position, Location and Navigation Symposium, 2018, pp. 133–140.
[7] M. Li and A. Mourikis, “High-precision, consistent EKF-based visual-inertial odometry,” International Journal of Robotics Research,

vol. 32, no. 6, pp. 690–711, May 2013.
[8] M. Shelley, “Monocular visual inertial odometry,” Master’s thesis, Technical University of Munich, Germany, 2014.
[9] “Position, navigation, and timing technologies in the 21st century,” J. Morton, F. van Diggelen, J. Spilker, Jr., and B. Parkinson,

Eds. Wiley-IEEE, 2021, vol. 2, Part D: Position, Navigation, and Timing Using Radio Signals-of-Opportunity, ch. 35–43, pp.
1115–1412.

[10] J. McEllroy, “Navigation using signals of opportunity in the AM transmission band,” Master’s thesis, Air Force Institute of Tech-
nology, Wright-Patterson Air Force Base, Ohio, USA, 2006.



[11] M. Psiaki and B. Slosman, “Tracking of digital FM OFDM signals for the determination of navigation observables,” in Proceedings
of ION GNSS Conference, September 2019, pp. 2325–2348.
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