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1 Introduction

Our problem considers the unicycle robot trajectory in Figure 1. Here, the robot has its
motion restricted to a 2D space where there are 35 uniquely labeled landmarks in the envi-
ronment. The robot will make relative range and bearing measurements from any landmark
within a circular ”measurement zone.” The considered zones are of radius 5, 10, and 15
meters. Furthermore, we assume the robot has a data association and detection function to
be able to uniquely identify each landmark with its respective measurements. The project
objective is to conduct a beacon-based and SLAM-based [1], [2], [3] localization with range
and bearing measurements.

Figure 1: Unicycle robot trajectory.

In practice, we typically do not know the actual robot trajectory so a standard performance
metric used to evaluate localization filters is loop-closure. In loop-closure, a robot starts from
a known initial condition and returns back to it at the end of the experiment. The loop-
closure error is defined as the difference between the known start location and the estimated
final return point k = N with k = 0, 1, 2, · · · , N (i.e., Loop Closure = ‖x(0)− x̂(N)‖2).
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2 Beacon-Based Localization

The beacon-based localization portion of the project focuses on robot state estimation only.
The robot assumes to know the location of all landmarks, i.e., when the robot detects the
landmark it knows both the unique landmark id and the associated location. The three
different ”measurement zone” cases (r = 5 m, 10 m, and 15 m) will be looked at in the
beacon-based localization framework.

The system (i.e., dynamics) and measurement model for a robot moving on a flat 2D surface
performing localization only are defined as follows:

x(k + 1) =

xr(k) + δtu1(k)cos(θr(k))
yr(k) + δtu1(k)sin(θr(k))

θr(k) + δtu2(k)

+ w(k), where w(k) =

wxr(k)
wyr(k)
wθr(k)


zik =

[
ri
φi

]
+ v(k)

=

[ √
(xr(k)− xbi)2 + (yr(k)− ybi)2

atan2(yr(k)− ybi , xr(k)− xbi)− θr(k) + v(k)

]
(xbi , ybi), i ∈ {1, ..., 35}

The linearized state transition and observation Jacobian matrices for a robot moving on a
flat 2D surface performing localization only are defined as follows:

Fk =

1 0 −sin(θ̂+r (k))u1(k)δr
0 1 cos(θ̂+r (k))u1(k)δr
0 0 −1



H i
k+1 =


x̂−r (k+1)−xbi√

(xr(k)−xbi )
2+(yr(k)−ybi )

2

ŷ−r (k+1)−ybi√
(xr(k)−xbi )

2+(yr(k)−ybi )
2

0

−(ŷ−r (k+1)−ybi )1+( ŷ−r (k+1)−ybi

x̂−r (k+1)−xbi

)2
(x̂−r (k+1)−xbi )

2

11+( ŷ−r (k+1)−ybi

x̂−r (k+1)−xbi

)2
(x̂−r (k+1)−xbi )

2

−1


The process noise for the system model (i.e., w(k)) was provided in as a data file. Even so,
the process noise covariance for the robot and the measurement noise covariance for each
landmark are defined as follows:
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QRobot =

(0.4δt)
2 0 0

0 (0.4δt)
2 0

0 0 (0.05δt)
2

Ri =

[
(0.1)2 0

0 ( 3π
180

)2

]
, i ∈ {1, · · · , 35}

The Extended Kalman Filter (EKF) for beacon-based localization was developed based on
these set parameters. For beacon-based localization, the filter is straightforward since only
3 states are being estimated x̂ = [xr, yr, θr]

>. The EKF, also, will search for the subset of
landmarks within the specified ”measurement zones” when constructing the measurement
vector (i.e., ranges and bearing angles) and linearized measurement matrix at each time step.

The estimated trajectories for the different ”measurement zone” radii r = 5 m, 10 m, and 15
m are shown in Figure 2. As expected, the r = 5 m case gave the worse estimate trajectory
while the r = 15 m case gave the best estimate trajectory. Most likely, this is due to the
r = 5 ”measurement zone” containing time periods with no measurements transmitting to
the robot. This means the EKF does not have a correction (or update) step since there are
no measurements to provide feedback (e.g., innovation) for our propagation (or prediction)
step. The r = 10 m and r = 15 m cases always has at least one measurement within the
”measurement zone” at all times which leads to better performance.

Figure 2: Beacon-based localization estimated robot trajectories for r ∈ {5, 10, 15} m.
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The time at which each uniquely identified landmark is detected for each ”measurement
zone” radii is shown in Figure 3. Notice in the r = 5 m case, there are several occasions
where no measurements are transmitted to the robot (e.g., ∼ 45− 55 seconds). This led our
filter to drift at several time intervals during simulation.

Figure 3: Beacon-based localization landmark detection times.

The loop-closure error for each case study is summarized below in table 1. As we expect, the
loop-closure gets better with a larger ”measurement zone” radius. Although, the loop-closure
for r = 15 m is only slightly better than for r = 10 m.

Table 1: Beacon-based localization loop-closure.

Zone Radii (m) Loop-Closure [x, y] Error (m) Loop-Closure Error (m)
5 [-0.1750, 0.1033] 0.2032

10 [-0.1393, 0.0681] 0.1550
15 [-0.1393, 0.0680] 0.1550

3 SLAM Localization

The SLAM localization portion of the project focuses on a robot estimating its own states
and the unknown landmark positions. The robot does not know the location of the land-
marks, so when it detects a landmark it only distinguishes its unique label. The same study
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will be repeated from above, three different ”measurement zone” cases (r = 5 m, 10 m, and
15 m) will be looked at in the SLAM localization framework.

The system (i.e., dynamics) and measurement model for a robot moving on a flat 2D surface
performing localization only are defined as follows:

x(k + 1) =



xr(k) + δtu1(k)cos(θr(k))
yr(k) + δtu1(k)sin(θr(k))

θr(k) + δtu2(k)
xl1(k)
yl1(k)

...
xl35(k)
yl35(k)


+ w(k), where w(k) =



wxr(k)
wyr(k)
wθr(k)

0
0
...
0
0


zik =

[
ri
φi

]
+ v(k)

=

[ √
(xr(k)− xbi)2 + (yr(k)− ybi)2

atan2(yr(k)− ybi , xr(k)− xbi)− θr(k) + v(k)

]
(xbi , ybi), i ∈ {1, ..., 35}

The linearized state transition and observation Jacobian matrices for a robot moving on a
flat 2D surface performing localization only are defined as follows:

FRobot =

1 0 −sin(θ̂+r (k))u1(k)δr
0 1 cos(θ̂+r (k))u1(k)δr
0 0 −1

 , Fk =


FRobot 0 · · · 0

0 I2×2
...

0
. . . 0

0 · · · I2×2



H i
r,k+1 =


x̂−r (k+1)−xbi√

(xr(k)−xbi )
2+(yr(k)−ybi )

2

ŷ−r (k+1)−ybi√
(xr(k)−xbi )

2+(yr(k)−ybi )
2

0

−(ŷ−r (k+1)−ybi )1+( ŷ−r (k+1)−ybi

x̂−r (k+1)−xbi

)2
(x̂−r (k+1)−xbi )

2

11+( ŷ−r (k+1)−ybi

x̂−r (k+1)−xbi

)2
(x̂−r (k+1)−xbi )

2

−1



H i
l,k+1 =


−(x̂−r (k+1)−xbi )√

(xr(k)−xbi )
2+(yr(k)−ybi )

2

−(ŷ−r (k+1)−ybi )√
(xr(k)−xbi )

2+(yr(k)−ybi )
2

ŷ−r (k+1)−ybi1+( ŷ−r (k+1)−ybi

x̂−r (k+1)−xbi

)2
(x̂−r (k+1)−xbi )

2

−11+( ŷ−r (k+1)−ybi

x̂−r (k+1)−xbi

)2
(x̂−r (k+1)−xbi )

2
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The process and measurement noise are similar to before, but now we include process noise for
each landmark. But since each landmark is stationary, its process noise is zero (Qli = 02×2).
Hence, the process noise covariance for our states and the measurement noise covariance for
each landmark are defined as follows:

QRobot =

(0.4δt)
2 0 0

0 (0.4δt)
2 0

0 0 (0.05δt)
2

 , Qk =


Qpv 0 · · · 0

0 02×2
...

0
. . . 0

0 · · · 02×2


Ri =

[
(0.1)2 0

0 ( 3π
180

)2

]
, i ∈ {1, · · · , 35}

As above, the estimated trajectories for the different ”measurement zone” radii are shown
in Figure 4. Like for beacon-based localization, the estimated robot trajectory gets better
with r > 5 m.

Figure 4: SLAM localization estimated robot trajectories for r ∈ {5, 10, 15} m.

The time at which each uniquely identified landmark is detected for each ”measurement
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zone” radius is shown in Figure 5. These landmark detection plots should be the same
as in the beacon-based localization case since the true robot trajectory and true landmark
positions were used for detection in both cases. Notice again, there are several instances
where measurements are not transmitted to the robot (e.g., ∼ 90− 105 seconds).

Figure 5: SLAM localization landmark detection times.

The loop-closure error for each case study is summarized below in table 2. We see that
the loop-closure gets significantly better when expanding the ”measurement zone” from r
= 5 m to r = 10 m. Although, notice the loop-closure for r = 10 m has a slightly better
performance than for r 15 m. This could arise due to more landmarks needing to be estimated
with a greater ”measurement zone” which degrades our filter’s performance. Also it is worth
noting, the loop closure performance in SLAM is quite worse compared to our loop-closure
performance in beacon-based localization. This performance degradation is expected as the
worse performance is correlated with a higher number of estimated states.

Table 2: SLAM localization loop-closure.

Zone Radii (m) Loop-Closure [x, y] Error (m) Loop-Closure Error (m)
5 [-0.2373, -0.7577] 0.7940

10 [-0.3948, -0.0937] 0.4058
15 [-0.3886, -0.0843] 0.3976

8



UC Irvine Spring 2021

4 Performance Analysis Discussion

This system was a simulation of a unicycle robot in a known (beacon-based localization)
and unknown (SLAM localization) environment. There are multiple ways to compare the
estimation performance of an EKF in both a single-run and Monte Carlo (MC) setting.

For single-run EKF, it is nice to compare ”apples to apples” rather than ”apples to oranges.”
Thus, a system with a fixed random seed for both the measurement and process noise allows
us to better compare filter performance. This seed setting could be defined as ”controlled
randomness” which allows for a better comparison of our filter’s performance. Several good
metrics for our single-run EKF case are the estimation error trajectories with ±3σ bounds,
normalized estimation error squared (NEES), and normalized innovation squared (NIS). The
estimation error plots provide a good metric for determining whether our estimates are bi-
ased and how confident we are in the estimates. The NEES and NIS metrics determine
whether the estimates and measurements yield a consistent filter. The NEES or NIS will use
a chi-squared test to determine if the filter is ill-matched in the dynamics/measurements or
in the process/measurement noises.

It would also be good to perform a Monte Carlo (MC) analysis to determine the average
performance of the filter over many trials. The root-mean square error (RMSE) metric is a
classic example of a test for evaluating the performance of a filter with M independent error
MC trials. A point cloud with the absolute error superimposed on the RMSE for the filter
will provide good insight into estimation performance.

Note: See provided MATLAB codes for the simulated performance results.

5 Conclusion

This project enabled students to understand the performance of a probabilistic robot from
a beacon-based and SLAM-based localization point-of-view. The ability to estimate the
internal states (e.g., position and velocity) of a vehicle, or robot, is due to the EKF. If a
linearized system is approximately equal to the actual system, then an EKF will provide
a sufficient approximation of the true system’s states. The EKF is an extremely useful
and powerful tool, but there are alternative nonlinear estimators which perform better at
the expense of computation effort (e.g., Particle filter, unscented Kalman filter, Gaussian
sum filter, ect.). The project could be repeated using other nonlinear estimation filters to
compare their performance to the EKF in the future.
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