
ME 155C Control System Lab
Project

Alex Nguyen

June 12, 2020

1

ME 155C Alex Nguyen

Contents

1 Introduction 3

2 Experimental Identification 6
2.1 Nonparametric Identification . 6
2.2 Parametric Identification . 9

3 Controller Design 14

4 Closed-Loop Performance 18

5 Conclusion 21

6 MATLAB Script 22
6.1 Nonparametric Identification . 22
6.2 Parametric Identification . 26
6.3 Controller Design . 30
6.4 Close-Loop Performance . 33

2

ME 155C Alex Nguyen

Abstract

This project was tailored towards concepts learned in system identification and controller
design. The first part of the project involved system identification section. This required
performing nonparametric identification (Correlation Method) and parametric identification
(Least-Squares Method) on the given experimental data. After performing these identifica-
tion techniques, we have arrived at two different process for our system. The second part of
the project was controller design of the identified process. The controller was developed us-
ing a lead compensator design then tested for its closed-loop performance. The performance
of the identified and ideal process was tested with a step response then analyzed through
frequency response methods.

1 Introduction

The problem proposed is the identification and controller design of a two-cart mechanical
system. The identification required is both parametric and non-parametric then designing
a feedback controller based on a process identified in either identification method. The
controller design has a few requirements which need to be met:

1. Step response control input does not exceed the maximum required by hardware where
the track is 1m long

2. Step response outputs an overshoot < 15 %

3. Step response outputs the smallest settling time achieveable

4. Closed-loop is robust with respect to measurement noise

After designing a controller, we are required to verify the closed loop performance of the
system. First, we are asked to state the properties of the closed loop system (eg rise-time,
overshoot, settling time, and maximum control magnitude). As well as, identify the closed
loop frequency response for the step response.

3

ME 155C Alex Nguyen

Figure 1: Two-Cart Masses Attached by Spring

The process to be controlled is two-carts with a spring apparatus shown above in Figure 1.
By Newton’s second law, we can derive the following relations:

m1ẍ1 = k(x2 − x1) + F

m2ẍ2 = k(x1 − x2)

where x1 and x2 are the positions of each cart, m1 and m2 are the masses of each cart, and
k is the spring constant. The force F is controlled due to an electric motor by an applied
voltage V given by the following equation:

F =
KmKg

Rmr
(V − KmKg

r
ẋ1)

where Km, Kg, Rm, and r are motor parameters. The control input is the applied voltage
(u := V) with the goal of controlling the second cart’s position x2. The two-cart system
has an ideal continuous-time transfer function which was provided in previous ECE courses
(which Mechanical Engineers have not taken):

G(s) =
Y (s)

U(s)
=

181.8

s4 + 13.24s3 + 127.2s2 + 810.4s
(1)

where the input units for V(s) is volts and the output units for Y(s) is in meters. Although,
Equation 1 is not the true transfer function but an ideal version of it.

A great reference for understanding concepts in identification and controller design project
is Advanced Undergraduate Topics in Control System Design. Particularly, Chapters two
through seven. Chapters two through five covered system identification for nonparametric
and parametric methods. Chapters six through seven covered robust stability and control
design by loop shaping.

4

ME 155C Alex Nguyen

The rest of the document will outline process identification and the controller design process.
First, will be the experimental identification of the two cart system using nonparametric and
parametric methods. Next, will be the controller design of the identified process from the
experimental identification section. Then, the closed loop performance of the system will be
tested after implementing the designed controller. Lastly, there will be final remarks and
thoughts on the project with suggestions for improvement.

5

ME 155C Alex Nguyen

2 Experimental Identification

2.1 Nonparametric Identification

Due to Covid-19, the data was given to students rather than collected ourselves in lab. This
data has already taken into account input magnitude and sampling frequency which is in the
linear region of operation. Although the time frame of the data given is between 1 and 10
seconds so the experiment time is nine seconds all together. This data will therefore need to
be adjusted to account for the phase loss and be trimmed to adjust for the transient response
of the system.

We are given 40 different frequency values to be used in our nonparametric identification.
These frequency values range from 2 rad/s up to 90 rad/s. The input data is one column
vector for the sine-wave input used while the output data has three column vectors. The
first column for the output data is the time vector which ranges from one to ten seconds.
The second and third columns correspond to the position in ticks (or pulses) of the two carts
in the system. The second column is the first cart’s position (x1) and the third column is
the second cart’s position (x2).

The input used has the units volts [V] while the output used has the units meters [m].
Initially, the output data given is in pulses of an encoder but using a conversion knowing the
wheel circumference and the pulses per revolution we can obtain an output in meters. The
following is a conversion used to get meters rather than pulses :

conv =
0.1 m

4096 pulses

This encoder conversion will yield a transfer function with the correct units of m
V

, just like
equation 1 shown in the introduction section. Our goal for this identification is to get a
transfer function which looks similar. Although, the obtained transfer function will not be
the same due to measurement noise and possible disturbances while collecting data.

The nonparametric method uses frequency response identification with sinusoidal inputs and
outputs which look like the following:

u(k) = αcos(Ωk), ∀k ∈ 1, 2, 3, ..., N

y(k) = αAΩcos(Ωk + φΩ) + ε(k) + n(k)

6

ME 155C Alex Nguyen

To minimize the errors caused by noise, the amplitude α should be large. Although, small
enough to not leave the linear regieme. If n(k) is much smaller than αAΩ and for k sufficiently
large so that ε(k) is negligible we get the following equation:

y(k) ≈ αAΩcos(Ωk + φΩ)

Here we assume that H(z) is BIBO stable where the magnitude of y(k) is AΩ := |H(ejΩ)|
and phase of y(k) is φΩ := ∠H(ejΩ). Repeating this identification for different distinct
frequencies Ω, you can obtain bode plot points for H(z). Eventually, you can estimate the
frequency response H(ejΩ) over a range of frequencies.

Now we are ready to being finding the frequency response for the range of 40 frequencies.
For this, we use the correlation method using the output y(k) we got from the applied input
u(k).

KΩ :=
1

T

T∑
k=1

e−jΩky(k) =
1

T

T∑
k=1

(cos(Ωk)− jsin(Ωk))y(k) (2)

As T → ∞, terms converge to zero then we can use a z-transform to get the following
estimate for frequency response H(ejΩ) which is valid for a large T.

Ĥ(ejΩ) =
2

α
KΩ (3)

It is important for the data to have a small sample time and the magnitude to be as large as
possible while not leaving the linear regime. This is important because with the proper input
magnitude and sampling frequency the transfer function estimate will be very robust to noise.

7

ME 155C Alex Nguyen

Figure 2: Bode Plot Using Correlation Method

My analysis began with loading all the data into MATLAB to begin the identification. The
first task was converting the output units from pulses (or ticks) to meters. After, I adjusted
the data to get the correct phase data and get rid of the transient response. Once the data
was cropped and adjusted, the correlation method technique was performed to get an esti-
mate of the frequency response using equations 2 and 3. The magnitude was obtained by
applying the log to the absolute value of the estimate then multiplying by 20. The phase
was obtained by using the phase() function in MATLAB then converting from radians to
degrees. The ideal transfer function was then plotted against the estimated transfer function
to get the following bode plot in Figure 2.

8

ME 155C Alex Nguyen

Figure 3: Bode Plot Transfer Function Estimate

The next task was to estimate a transfer function for the nonparametric frequency response
estimate. I used the MATLAB function tfest() to estimate the locations of the possible poles,
zeros, and gain. This yielded the transfer function shown below and the bode plot shown in
Figure 3.

P0(s) =
366.5

(s+ 7.025)(s+ 0.03806)(s2 + 4.587s+ 455.1)
(4)

The identified transfer function (Equation 4) is similar to the ideal transfer function (Equa-
tion 1) since it has volts as the input and meters as the output. The estimated transfer
function won’t exactly overlap the ideal due to measurement noise and possible disturbances
but, as you can see from Figure 3, they look very similar.

2.2 Parametric Identification

For parametric identification, we are required to find an ARX model for the two-cart system
using least-squares. Again due to covid-19, the data for the parametric identification section
was given to students. The input types given are square waves of low frequency and chirp
signals. Since the data was given, the selection of input magnitude was addressed already
for students.

9

ME 155C Alex Nguyen

The input chosen should have taken the following into account:

1. The input, u(k), should be sufficiently rich such that the R matrix is not singular (and
well conditioned)

2. The amplitude of the resulting output, y(k), should be much larger than the measure-
ment noise. Check the quality of the fit by computing SSE

||Y ||2

3. The input should be representative of the class of inputs that are expected to appear
in the feedback loop

There is an optimal choice of input magnitude which is between noise dominating and non-
linear behavior. So, after collecting data the you should validate the input-output behavior
with the list above since the input choice is the most critical aspect in good system identifica-
tion. Also, one should check to see if the input chosen is in the linear regime by multiplying
the input and output vector by a gain then comparing with the non-scaled vector.

The first step to analyzing the parametric identification data is to account for the system
having an integrator (discrete-time pole at z = 1). If this not taken into account, some
experiments will lead to an unstable system and others to a stable one. This will make the
identification of the data very difficult.

Dealing with known transfer functions, we can get the following transfer function for the
known pole:

Y (z)

U(z)
= H(z) =

1

z − λ
H̃(z) (5)

where H̃(z) corresponds to the unknown portion of the transfer function. The transfer
function with the known parameter can be manipulated to the following form:

Ỹ (z)

U(z)
= H̃(z)

Then, we can get the following equation for Ỹ (z) since we know there is a discrete-time
integrator (z = 1):

Ỹ (z) = (z − 1)Y (z) → ỹ(k) = y(k + 1)− y(k)

Here, λ = 1 since the known parameter is the discrete-time integrator. Now we can directly
estimate H̃(z) by computing ỹ(k) prior to identification then using ỹ(k) rather than y(k).

10

ME 155C Alex Nguyen

To get H(z) you must multiply H̃(z) by 1
z−1

(or generally, 1
z−λ) to get the original transfer

function. Although, now the vector length will be difference for the adjusted input so that
must be accounted for as well.

The next step will be to use signal scaling on the input data to make sure the least-square
estimate is well conditioned by having the input and output have roughly the same order
of magnitude magnitude. The known parameter data is scaled by a constant value by the
following relation:

ũ(k) = αuu(k)

ỹ(k) = αky(k)

Then the original transfer function is obtained by reversing the scaling on the unknown
portion of the transfer function from u to y:

H(z) =
αy
αu
H̃(z) (6)

By using Equation 6, I was able to obtain a better estimate for the transfer function. The αy
was set to 7500 and the αu was set to 1000. Eventually, I will have to rescale the obtained
transfer function to get the original transfer function, H(z), rather than the unknown portion
of the transfer function, H̃(z).

Lastly, the data needs to be adjusted to mitigate the quantization noise due to signal scal-
ing and accounting for the known parameter. Sometimes the hardware used to collect data
allows us to sample frequencies much larger than what is needed for identification - oversam-
pling. Due to this, one should down-sample the signals to remove measurement noise from
the signals.

If the input-output signals have been sampled with a period Tlow but one wants to obtain
new input-output signals ũ(k) and ỹ(k) sampled with period Thigh := LTlow where L is an
integer greater than one. Instead of disregarding the remaining samples, one can receive
some noise reduction by averaging the sample data with the new sample period.

ũ(k) =
u(Lk − 1) + u(Lk) + u(Lk + 1)

3
(7)

ỹ(k) =
y(Lk − 1) + y(Lk) + y(Lk + 1)

3
(8)

11

ME 155C Alex Nguyen

The down-sampled signals exhibit lower noise than the original ones because the noise is be-
ing ”averaged-out.” If one has the signal processing toolbox, you can use the filtering function
called resample(). This is a down-sampling function with a more sophisticated averaging al-
gorithm to reduce noise more than the averaging technique shown above in Equations 7 and
8. This is the method I used to analyze the parametric data for the project.

The data is now ready to be used in parametric identification of an ARX model for the two
cart spring system. In order to get the best fit bode plot, one needs to decide on the model
order for the ARX model. For my data, the input-output data was sampled at 1 kHz. The
transfer functions were obtained using the arx() MATLAB function with na = 3, nb = 4,
and nk = 0 which reflects the expectation of 3 poles with one at z = 1 and no delay from u
to ỹ(k) with the data downsampled to 25 Hz.

To choose the model order, I developed a script which tested the arx() function in MATLAB
for various numbers of poles and zeros. In each case, the number of poles was set equal to
the number of zeros then a least-squares estimation was performed to see the optimal val-
ues of poles and zeros. The SSE decreased as na was increased but the standard deviation
increased as well for the coefficients.

The next step is to merge multiple experiments together to make a sufficiently rich R matrix.
My parametric transfer function included many input/output data that was combined to
create one ARX model. Although, I created two different bode plots to check which data
sets gave a bode plot most similar to the ideal transfer function shown in Figure 4. The first
bode plot, shown in Figure is from merging all the data sets together. The second bode plot
is from merging the individual input signals together (ie chirp signal data only and square
wave data only.

12

ME 155C Alex Nguyen

Figure 4: Different Merged Data Sets for Parametric Identification

The transfer function for each of the ARX models was as follows:

P0all data(s) =
0.002982(s− 374.8)(s− 10.6)(s+ 1.397)

s(s+ 0.9098)(s2 + 6.034s+ 446)
(9)

P0chirp(s) =
0.007977s3 − 0.6052s2 + 7.597s+ 17.62

s4 + 6.937s3 + 475.2s2 + 561.3s− 1.255e− 10
(10)

P0square(s) =
0.0008799s3 − 0.4526s2 + 5.433s+ 573.6

s4 + 13.15s3 + 501s2 + 3294s+ 1.317e− 09
(11)

Similar to nonparametric, the transfer functions above have an input of volts and an output
of meters like equation 1. These transfer functions can be used to compare different step
response inputs for the next section.

13

ME 155C Alex Nguyen

3 Controller Design

The controller design section requires students to design a feedback controller for the process
identified in the experimental identification section. The controller was designed for the ideal
transfer function which needs to satisfy the following requirements:

1. The control input does not exceed the maximum one allowed by hardware for a step-
response (assuming the track is 1m long)

2. The step response has an overshoot < 15 %

3. The step response exhibits the smallest settling time you are able to achieve

4. The closed-loop step response is somewhat robust to noise

To begin designing the controller, open-loop gain shaping was used to develop a lead compen-
sator for the identified process. In classical lead compensation one starts with the basic unit-
gain basic controller C(s) = 1 then one shapes the desired open-loop gain L(s) := C(s)P0(s)
to satisfy the open loop constraints.

The loop shaping beings by multiplying the controller by a proportional gain, k, which
moves the bode plot up or down without changing the phase. Then, we can develop a lead
compensator based off of the open-loop controller with gain. The lead controller will have
the following form:

Clead(s) =
Ts+ 1

αTs+ 1
(12)

Multiplying the proportional gain to the lead compensator, the final developed controller
will be of the form C(s) = K Ts+1

αTs+1
.

The initial controller design was developed for the ideal transfer function in Equation 1. The
first step to developing the controller is to define the overshoot which is used to find the
damping ratio. The damping ratio then dictates the required phase margin needed for the
system.

14

ME 155C Alex Nguyen

ζ =
−ln(OS

100
)√

π2 + ln(OS
100

)2

(13)

φreq = tan−1 2ζ√
−2ζ2 +

√
1 + 4ζ4

(14)

The next step is to choose the proportional gain which will scale the open loop gain L(s).
The phase margin for this gain is used to determine the maximum phase necessary to get the
correct overshoot. My model required a phase margin of at least 53o to have no greater than
15% overshoot using the φreq equation above. The maximum phase necessary is determined
by subtracting the phase margin for the scaled open loop gain system by the required phase
margin plus 10o since additional phase lead is required. We can then solve for the maximum
phase lead angle, α, which will be used in the lead controller Equation 15. The equation for
alpha is the following:

α =
1− sin−1(φ)

1 + sin−1(φ)

The new gain crossover frequency can be found by the following equation then inspection
on a bode plot:

Km = −20log10(
1√
α

)

This yielded me with a new crossover frequency of wm = 9.87 rad/s. Now the period of the
lead controller can be calculated by the maximum phase lead angle and the new crossover
frequency. The value T can be found from the following equation:

T =
1

wm
√
α

Using this equation, I found the period to be T = 0.1548 seconds. After these calculations,
the controller which I ended up designing was the following:

C(s) =
0.7952s+ 12

0.1548s+ 1
(15)

The design choice for overshoot was given but I chose the gain to be 20 for steady state
error reduction of the system. Then, I created a controller which satisfied all the specified

15

ME 155C Alex Nguyen

requirements in the handout.

The identified model I chose to control was the parametric identification model, but I an-
alyzed the nonparamtric identification too. This model seemed like a better identification
of the true transfer function because there was a variety of different inputs used to develop
the ARX model. The nonparametric identification used a sine-wave input to estimate the
frequency response for the two cart system. Also, the correlation method seemed more ap-
proximate than the transfer function identification method outlined in ch 5 of the textbook.

Implementing the controller to the ideal transfer function, we get the following step response
with an output less than the maximum length of the hardware (1 m).

Figure 5: Comparision Between with and without a Controller

Here, the output is around 0.85 m which is below the max allowed length but there is some
overshoot. Also, notice the quicker response time in Figure 5. The applied controller allows
for a quicker response and settling time from the system due to a step input. Although,
there is an overshoot but it meets the requirements by being < 15 % of the input value. The
parameters of the lead compensator were tuned to allow for the quickest settling time but
the fastest I could manage, while the controller stabilized all processes, was equation 15.

The previous figure (Fig. 5) was for the ideal case alone with a controller and without

16

ME 155C Alex Nguyen

a controller. The next figure shows the closed loop step response of the identified (both)
compared to the ideal with the controller.

Figure 6: Closed-Loop Robustness

Looking at Figure 6, we can see the closed loop responses are fairly similar for the two
identified processes and the ideal process. This shows the closed-loop system is somewhat
robust to measurement noise by comparing the outputted values with the ideal closed-loop
system. Although, the ideal process transfer function yielded the most oscillations and
overshoot when compared to the experimentally identified processes. There was also some
trouble developing a lead compensator controller for the ideal process. I was able to develop
a controller which would fix the steady state error of the two identified processes but caused
the ideal to go unstable. Therefore, I had to settle on a controller which had some steady
state error but would work for all processes.

17

ME 155C Alex Nguyen

4 Closed-Loop Performance

The closed-loop performance section required the implementation and redesign of your pro-
cess controller. The developed controller yielded parameters and plots for the identified
parametric system.

Figure 7: Closed-Loop Step Response - Parametric

The closed-loop step response shows a small overshoot but then an eventual decay to the
steady state value of 0.85 m. The input was set to be 0.85 V, so the step response tracks
well other than the minor overshoot.

Closed-Loop Step Response Properties
Rise Time (s) 0.6533

Settling Time (s) 1.8152
Overshoot (%) 3.7738

Peak (m) 0.8821
Peak Time (s) 1.4145

The closed-loop step response’s properties are shown above in the table. It is important to
note that the settling time was the best I could achieve while being robust to other noisy
processes or the ideal process. Multiple controllers were developed using lead compensation

18

ME 155C Alex Nguyen

on all the process systems (ideal, nonparametric, parametric) but issues would always arise
when trying to obtain a robust controller. Either the steady state error would be large or one
of the step response outputs would go unstable. As stated in the last section, this controller
had a trade off of a fast response time to be somewhat robust to measurement noise. The
overshoot ended up being vary small for the identified process in comparison to the ideal
transfer function which can be seen in Figure 6. Also, the peak value during overshoot was
0.8821 m.

Figure 8: Closed-Loop Frequency Response

The closed loop frequency response for the parametric identified process can be seen above
in Figure 8. The method used to identify the frequency response is the bode() command in
MATLAB which gives the magnitude and phase plot of the closed loop transfer function.

19

ME 155C Alex Nguyen

Figure 9: Closed-Loop Frequency - All Processes

The plot above, in Figure 9, represents the closed-loop frequency response for the two identi-
fied processes and the ideal process. Notice how the parametric and nonparametric frequency
responses look fairly similar when compared with each other. This is to be expected since the
identified processes contain measurement noise which cannot be completely mitigated with
a designed controller. Therefore, the ideal and identified responses will look different from
each other. The ideal process’s bode plot looks smoothed out with the controller whereas
the identified processes still have a bump at their cutoff frequency. Also, after around 100
rad/s the magnitude and phase of the closed loop parametric response starts to diverge from
the ideal process. There is also a phase ”bump” between the ideal and identified closed loop
response but I assume that would be due to measurement noise and possible perturbations
to the system. Lastly, it would seem a good region for the identified transfer functions lie
between [1,100] rad/s.

20

ME 155C Alex Nguyen

5 Conclusion

This report outlined the theory and analysis performed on the given data for system identi-
fication and controller design. After identification, the obtained process in the experimental
identification was similar to the ideal process. In the controller design section, the lead
compensator developed was robust to measurement noise while optimizing the rise/settling
time for the closed-loop step response. In the future, it would be nice to collect data for
the input choice of the two-cart system. Due to covid-19, the data was given to us so much
of the work was relieved by obtaining input choice data for nonparametric and parametric
identification. Also, if more time was available, I wished to develop a better controller which
had a settling time of less than one second while being robust to measurement noise and
having minimal steady-state error.

21

ME 155C Alex Nguyen

6 MATLAB Script

6.1 Nonparametric Identification

% ME 155C Control System Lab Project: Non-Parametric Identification
 Correlation Method
% By: Alex Nguyen

clc; clear; close all;

load('Part1.mat')

%FREQUENCY DATA
item = sort([10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
 29 2 30 35 ...
 3 40 45 4 50 55 5 60 65 6 70 75 7 80 8 90 9]);

Correlation Method
alpha = 2; %input amplitude
H = zeros(length(item),2); %preallocation

for i = 1:length(item)
 %DEFINE INPUT & OUTPUT DATA
 u = eval(sprintf('Part1_%drad_s_input_1',item(i))); %input [V]
 y = encoder(eval(sprintf('Part1_
%drad_s_output_1',item(i)))); %output [s,m,m]
 t = y(:,1); %time vector [s]
 w = item(i); %continuous time frequency [rad/s]

 % t = y(1:end-1,1); %time vector [s]
 % y = y(2:end,2:3) - y(1:end-1,2:3); %assuming integrator at z
 = 1

 %ADJUST DATA
 [~,ia] = findpeaks(u); %local max
 n1 = ia(1); %new index starting point
 n2 = ia(end); %index ending point

 %CORRECTING PHASE IN DATA
 u = u(n1:n2); y = y(n1:n2,2:3); t = t(n1:n2);

% u = u(n1:n2); y = y(n1:n2,:); t = t(n1:n2); %assuming integrator
 at z = 1

 %CROP THE DATA
 T = t(end)-t(1); %input sine-wave duration [s]
 Ts = t(2)-t(1); %sample time [s]
 Omega = Ts*w; %discrete time angular velocity [rad]
 f = w/2/pi; %frequency [Hz] - specifically 10 rad/s
 tpeak = floor((T-3)*f)/f; %keep last 3 s of experiment
 kpeak = round(tpeak/Ts); %convert to samples

 %CORRELATION METHOD
 ycrop = y(kpeak:end,1:2); %cropped output data [m,m]
 k = 1:length(ycrop); %sample number

1

22

 z = exp(-1i*Omega*k);
 K = 1/length(ycrop)*(z*ycrop);
 H(i,:) = 2*K/alpha; %H estimate
end

%CONSTRUCTING BODE PLOT
Hdb = 20*log10(abs(H)); %Gain [dB]
Hdeg1 = phase(H(:,1))*180/pi; %Cart x1 Phase [deg]
Hdeg2 = phase(H(:,2))*180/pi; %Cart x2 Phase [deg]
w = sort(item); %frequency values [rad/s]

%IDEAL TRANSFER FUNCTION
G = tf(2.97*61.2,[1 13.24 127.15 810.37 0]);
[mag,ang,wout] = bode(G); %bode mag & phase values
mag = squeeze(mag); phase = squeeze(ang);
mag = 20*log10(abs(mag));

figure;
subplot(2,1,1)
semilogx(w,Hdb(:,2),wout,mag,'--r'); grid on;
xlabel('w [rad/s]')
ylabel('Magnitude [dB]')
legend('Estimated (x_2)','Ideal TF','location','best')
xlim([2 100])
subplot(2,1,2)
semilogx(w,Hdeg2,wout,phase,'--r'); grid on;
xlabel('w [rad/s]')
ylabel('Phase [deg]')
legend('Estimated (x_2)','Ideal TF', 'location','best')
xlim([2 100])
sgtitle('Bode Plot - Spring Cart (x_2) Comparison')

2

ESTIMATED TRANSFER FUNCTION
gain = 10.^(Hdb(:,2)/20);
response = gain.*exp(1i*Hdeg2*pi/180);
gfr = idfrd(response,w,Ts);
x2_est = tfest(gfr,4,0); %estimated x2 c-t transfer function

%ESTIMATE TRANSFER FUNCTION ZPK
b = [366.5]; %numerator coefficients
a = [1 11.65 487.8 3216 121.7]; %denominator coefficients
[z1,p1,k1] = tf2zp(b,a);
sys_est1 = zpk(z1,p1,k1);
save('Process1.mat','sys_est1','z1','p1','k1','Ts') %saving .mat data

%ESTIMATED BODE MAGNITUDE AND PHASE DATA
[m,a,wnew] = bode(x2_est); %estimated x2 bode values
m = squeeze(m); a = squeeze(a);
m = 20*log10(abs(m));

%BODE PLOT COMPARISON
figure;
subplot(2,1,1)
semilogx(wnew,m,wout,mag,'--r'); grid on;
xlabel('w [rad/s]')
ylabel('Magnitude [dB]')

3

legend('Approximate TF','Ideal','location','best')
xlim([2 100])
subplot(2,1,2)
semilogx(wnew,a,wout,phase,'--r'); grid on;
xlabel('w [rad/s]')
ylabel('Phase [deg]')
legend('Approximate TF','Ideal', 'location','best')
xlim([2 100])
sgtitle('Bode Plot - Estimated TF (x_2) Comparison')

Published with MATLAB® R2020a

4

ME 155C Alex Nguyen

6.2 Parametric Identification

Table of Contents
 .. 1
Ideal Transfer Function .. 1
SQUARE WAVE - INPUT/OUTPUT DATA .. 1
CHIRP SIGNAL -INPUT/OUTPUT DATA ... 2
DEVELOP ARX MODEL FOR DIFFERENT SIGNALS OF X2 (CART ATTATCHED TO
SPRING) ... 3

% ME 155C Control System Lab Project: Parametric Identification Least-
Squares Method
% By: Alex Nguyen

clc; clear; close all;

load('Part2.mat')

Ideal Transfer Function
G = tf(2.97*61.2,[1 13.24 127.15 810.37 0]);
[m,ang,w] = bode(G); %bode mag & phase values
m = 20*log10(abs(squeeze(m))); phase = squeeze(ang);

SQUARE WAVE - INPUT/OUTPUT DATA
u1 = Part2_square_dif_10_input_1; %input
y1 = encoder(Part2_square_dif_10_output_1); %output
u2 = Part2_square_10_input_1; %input
y2 = encoder(Part2_square_10_output_1); %output

%TIME
t = y2(:,1); %time vector [s]
Ts = t(2)-t(1); %sample time [s]

% ADJUST DATA - DEALING WITH KNOWN PARAMETERS
%assume the process has an integrator (d-t pole at z = 1) in its TF
y1 = y1(:,3); y2 = y2(:,3); %redefining data
ybar1 = y1(2:end) - y1(1:end-1); ybar2 = y2(2:end) -
 y2(1:end-1); %output [m]
ubar1 = u1(1:end-1); ubar2 = u2(1:end-1); %input [V]

% ADJUST DATA - SCALING OUTPUT SIGNAL
alpy = 7500;
alpu = 1000;
ybar1 = ybar1*alpy; ybar2 = ybar2*alpy; %scaled output
ubar1 = ubar1*alpu; ubar2 = ubar2*alpu; %scaled input

% ADJUST DATA - DOWN SAMPLING
L = round(0.04/Ts); %down sample from 1kHz to 40 Hz

1

26

ybar1 = resample(ybar1,1,L,1); ybar2 =
 resample(ybar2,1,L,1); %downsampling output [V]
ubar1 = resample(ubar1,1,L,1); ubar2 =
 resample(ubar2,1,L,1); %downsampling input [V]

CHIRP SIGNAL -INPUT/OUTPUT DATA
INPUT

u = zeros(9001,6); %preallocation

%STORING INPUT DATA
u(:,1) = Part2_chirp_0p001_1_rad_s_input_1; %chirp signal [0.001 Hz,1
 Hz]
u(:,2) = Part2_chirp_0p001_25_rad_s_input_1; %chirp signal [0.001
 Hz,25 Hz]
u(:,3) = Part2_chirp_0p001_90_input_1; %chirp signal [0.001 Hz,90 Hz]
u(:,4) = Part2_chirp_10_50_input_1; %chirp signal [10 Hz,50 Hz]
u(:,5) = Part2_chirp_1_10_rad_s_input_1; %chirp signal [1 Hz,10 Hz]
u(:,6) = Part2_chirp_20_90_input_1; %chirp signal [20 Hz,90 Hz]

%OUTPUT
y = zeros(9001,12); %preallocation

%STORING OUTPUT DATA - UNITS [s,m,m]
y(:,1) = Part2_chirp_0p001_1_rad_s_output_1(:,3); %chirp signal [0.001
 Hz,1 Hz]
y(:,2) = Part2_chirp_0p001_25_rad_s_output_1(:,3); %chirp signal
 [0.001 Hz,25 Hz]
y(:,3) = Part2_chirp_0p001_90_output_1(:,3); %chirp signal [0.001
 Hz,90 Hz]
y(:,4) = Part2_chirp_10_50_output_1(:,3); %chirp signal [10 Hz,50 Hz]
y(:,5) = Part2_chirp_1_10_rad_s_output_1(:,3); %chirp signal [1 Hz,10
 Hz]
y(:,6) = Part2_chirp_20_90_output_1(:,3); %chirp signal [20 Hz,90 Hz]

%CONVERT TICKS TO METERS
encoder = 0.1/4096; %[rev/ticks]
y = encoder*y;

% ADJUST DATA - DEALING WITH KNOWN PARAMETERS
%assume the process has an integrator (d-t pole at z = 1) in its TF
ybar = zeros(length(y)-1,size(y,2)); ubar = ybar;
for i = 1:6
 ybar(:,i) = y(2:end,i) - y(1:end-1,i); %output
 ubar(:,i) = u(1:end-1,i); %input
end

% ADJUST DATA - SCALING OUTPUT SIGNAL
alpy = 7500;
alpu = 1000;
ybar = alpy.*ybar(:,1:6); %scaled output
ubar = alpu.*ubar(:,1:6); %scaled input

2

% ADJUST DATA - DOWN SAMPLING
L = round(0.04/Ts); %down sample from 1kHz to 40 Hz
Tnew = L*Ts; %new sample time [s]
y = zeros(length(resample(ybar(:,1),1,L,1)),6); u = y; %preallocation
for i = 1:size(ybar,2)
 y(:,i) = resample(ybar(:,i),1,L,1); %output resampled
 u(:,i) = resample(ubar(:,1),1,L,1); %input resampled
end

DEVELOP ARX MODEL FOR DIFFERENT SIG-
NALS OF X2 (CART ATTATCHED TO SPRING)

%CREATE THE BEST ARX MODEL
na = 3; nb = 4; nk = 0;

dat = {0}; %preallocation
dat{1} = iddata(ybar1,ubar1,Tnew);
dat{2} = iddata(ybar2,ubar2,Tnew);
for i = 1:6
 dat{i+2} = iddata(y(:,i),u(:,i),Tnew);
end
data = merge(dat{1},dat{2},dat{3},dat{4},dat{5},dat{6},dat{7},dat{8});

model = arx(data,[na nb nk]); %estimated model
z = tf('z',Tnew); %used to create a d-t TF model
sysd = alpy/alpu/(z-1)*tf(model,'Measured'); %d-t transfer function
sys = d2c(sysd,'zoh'); %c-t transfer function

%ESTIMATE TRANSFER FUNCTION ZPK
b = [0.002982 -1.145 10.24 16.55]; %nustepmerator coefficients
a = [1 6.944 451.5 405.8 8.516e-10]; %denominator coefficients
[z2,p2,k2] = tf2zp(b,a);
sys_est2 = zpk(z2,p2,k2);
save('Process2.mat','sys_est2','z2','p2','k2','Ts') %saving .mat data

%MAGNITUDE AND PHASE DATA
[mag,ang,wout] = bode(sys);
mag = squeeze(mag);
mag = 20*log10(abs(mag)); %magnitude [dB]
ang = squeeze(ang)-360; %phase shifted by 2pi [ang]

figure;
subplot(2,1,1)
semilogx(w,m,'--r',wout,mag); grid on;
xlabel('w [rad/s]')
ylabel('Magnitude [dB]')
legend('Ideal TF','x_2 - Approx TF','location','best')
subplot(2,1,2)
semilogx(w,phase,'--r',wout,ang); grid on;
xlabel('w [rad/s]')
ylabel('Phase [deg]')

3

legend('Ideal TF','x_2 - Approx TF', 'location','best')
sgtitle('Bode Plot - Spring Cart (x_2)')

Published with MATLAB® R2020a

4

ME 155C Alex Nguyen

6.3 Controller Design

% ME 155C Control System Lab Project: Controller Design
% By: Alex Nguyen

clc; clear; close all;

%NONPARAMETRIC AND PARAMETRIC PROCESS TRANSFER FUNCTION
load('Process1.mat'); P0a = zpk(z1,p1,k1); %nonparametric process
load('Process2.mat'); P0b = zpk(z2,p2,k2); %parametric process - all
 data
load('ParametricTF.mat'); %parametric process - chirp and square data
 TF

%IDEAL TRANSFER FUNCTION
s = tf('s'); %ct variable 's'
G = tf(2.97*61.2,[1 13.24 127.15 810.37 0]);

%REQUIRED PHASE MARGIN
OS = 15; %percent overshoot
zeta = -log(OS/100)/sqrt(pi^2+log(OS/100)^2); %damping ratio
pm_req = atand(2*zeta/sqrt(-2*zeta^2+sqrt(1+4*zeta^4))); %phase margin
 required

%DEVLOPING CONTROLLER - LEAD COMPENSATOR
K = 20; %proportional gain
[~,Pm,~,~] = margin(K*G); %phase margin
phi = pm_req - Pm + 10; %maximum phase margin
alpha = (1-sind(phi))/(1+sind(phi));
[~,~,~,wm] = margin(K*G/sqrt(alpha)); %new crossover frequency [rad/s]
T = 1/wm/sqrt(alpha);
C = 12*(alpha*T*s+1)/(s*T+1); %lead compensator

%STEP RESPONSE INFO
L = C*G; %open loop gain
v = .85; %voltage step input [V]
Y1 = v*feedback(L,1); %closed loop - controller
Y2 = v*feedback(G,1); %closed loop feedback - no controller
stepinfo(Y1) %step-response characterisitics

figure;
step(Y1,Y2); %step-response output - Estimated & Ideal
legend('Controller','No Controller','location','best')
title('Closed-Loop Step Response with Ideal TF')

% %GAIN & PHASE MARGIN
% [Gm,Pm,Wcg,Wcp] = margin(L);
% fprintf('Gain Margin: %4.4f, Phase Margin: %4.4f\n',Gm,Pm)
% fprintf('Gain Crossover Freq: %4.4f, Phase Crossover Freq: %4.4f
\n',Wcg,Wcp)

%ROBUSTNESS WITH RESPECT TO MEASUREMENT NOISE
Y2 = v*feedback(C*P0_square,1); %parametric - square signal
Y3 = v*feedback(C*P0a,1); %nonparametric

1

30

figure;
step(Y3,Y2,Y1)
legend('Nonpar','Par - Square','Ideal','location','best')

%SAVE .MAT FILE
save('controller.mat','C')

Warning: The closed-loop system is unstable.

ans =

 struct with fields:

 RiseTime: 0.3436
 SettlingTime: 1.4839
 SettlingMin: 0.7978
 SettlingMax: 0.9754
 Overshoot: 14.7566
 Undershoot: 0
 Peak: 0.9754
 PeakTime: 0.8493

2

Published with MATLAB® R2020a

3

ME 155C Alex Nguyen

6.4 Close-Loop Performance

% ME 155C Control System Lab Project: Closed-Loop Performace
% By: Alex Nguyen

clc; clear; close all;

%LOADING DATA
load('controller.mat') %lead compensator controller
load('Process1.mat') %nonparametric identification
load('Process2.mat') %parametric identification - all data
load('ParametricTF.mat') %parametric identification - chirp and square
 data

%EVALUATE CLOSED LOOP STEP RESPONSE - ADJUSTED (v = 0.85)
v = 0.85; %input voltage
Y1 = v*feedback(G*C,1); %ideal closed loop
Y2 = v*feedback(sys_est1*C,1); %nonparametric closed loop
Y3 = v*feedback(P0_square*C,1); %parametric closed loop - square input

ideal = stepinfo(Y1); %ideal
nonparametric_step_info = stepinfo(Y2); %nonparametric
parametric_step_info = stepinfo(Y3); %parametric - square input

figure;
step(Y3);
title(sprintf('Closed-Loop Step-Response with Input %4.2f V',v))

%CLOSED-LOOP FREQUENCY RESPONSE
w = logspace(-1,3,100); %frequency [rad/s]
[m1,a1] = bode(Y1,w); m1 = 20*log10(abs(squeeze(m1))); a1 =
 squeeze(a1); %ideal
[m2,a2] = bode(Y2,w); m2 = 20*log10(abs(squeeze(m2))); a2 =
 squeeze(a2); %nonparametric
[m3,a3] = bode(Y3,w); m3 = 20*log10(abs(squeeze(m3))); a3 =
 squeeze(a3) - 360; %parametric

figure;
subplot(2,1,1)
semilogx(w,m3); grid on;
ylabel('Magnitude [dB]')
xlabel('frequency [rad/s]')
subplot(2,1,2)
semilogx(w,a3); grid on;
ylabel('Phase [deg]')
xlabel('frequency [rad/s]')
sgtitle('CL Frequency Response - Parametric with Controller')

figure;
subplot(2,1,1)
semilogx(w,m1,w,m2,w,m3); grid on;
ylabel('Magnitude [dB]')
xlabel('frequency [rad/s]')
subplot(2,1,2)

1

33

semilogx(w,a1,w,a2,w,a3); grid on;
ylabel('Phase [deg]')
xlabel('frequency [rad/s]')
legend('Ideal','Nonparametric','Parametric','Location','best')
sgtitle('Closed-Loop Frequency Response')

%PRINT RESULTS
nonparametric_step_info
parametric_step_info

nonparametric_step_info =

 struct with fields:

 RiseTime: 1.0647
 SettlingTime: 1.7757
 SettlingMin: 0.7469
 SettlingMax: 0.8283
 Overshoot: 0.1455
 Undershoot: 0
 Peak: 0.8283
 PeakTime: 2.7044

parametric_step_info =

 struct with fields:

 RiseTime: 0.6533
 SettlingTime: 1.8152
 SettlingMin: 0.7684
 SettlingMax: 0.8821
 Overshoot: 3.7738
 Undershoot: 0.0937
 Peak: 0.8821
 PeakTime: 1.4145

2

3

Published with MATLAB® R2020a

4

