
ME 17 HW2 Alex Nguyen

Solving Ordinary Differential Equations (ODEs)

Note: I confirm that I did not use codes from the web or from past years’ assignments and
that the work I submit is my own and my own only.

1 Introduction

The goal of this exercise is to simulate the motion of a disk interacting with the walls of a closed
container. To solve for the evolution of the position of the center of mass, an ordinary differential
equation must be solved using Euler’s scheme along with Newton’s 2nd Law of Motion.

The two forces acting on the disk are the weight (fw = mg) and the drag (fd = −cd||v||v).
Where v=(u,v) is the velocity vector, m is the mass, cd is the drag coefficient, and g is the gravity
vector.

The equation of motion is given by the ODE:

dv

dt
= g− cd

m
||v||v

v(t = 0) = v0
(1)

where v0 is the given initial velocity. Damping and friction forces apply when the ball interacts
with the container’s wall. The normal velocity is damped by a factor α and the tangential velocity
is damped by a factor β.

The given initial parameters are ∆t = .03 with the size of the closed container to be [0,1]x[0,1]
m. An initial velocity of v0=(.3,0) m

s , disk’s radius r = .05 m, initial location of the disk at (x,y)

= (.5,1-r) m, α=.8, β=0.99, cd=0.25 kg
s , m=1 kg, and g=.0981 m

s2
. Also, assume the time span is

from 0 to 60 seconds.

2 Derivation of Equations

Newton’s 2nd law:

F = m~a =
∑

~F = ~Fgravity + ~Fdrag

m~a = m~g + cd~v
2

d~v

dt
= ~g − cd

m
||~v||~v

(2)

A general version of the Euler’s scheme (or step) is shown below:

vn+1 = vn + ∆t
dv

dt
|t=tn

vn+1 = vn + ∆t(~g − cd
m

(vn)2)
(3)

1

ME 17 HW2 Alex Nguyen

The exact solution to the Euler scheme equation shown above is as follows:

v =

√
gm

cd
tanh(

√
gcd
m
t) (4)

When the disk is not touching the container’s wall, the following position and velocity equations
are used to describe the disk’s center of mass:

unp1 = un+ dt ∗ ax
vnp1 = vn+ dt ∗ ay

xnp1 = xn+ dt ∗ unp1
ynp1 = yn+ dt ∗ vnp1

(5)

Due to drag, the acceleration in the x and y directions vary according to the following equations:

ax =
du

dt
= 0− cd

m

√
un2 + vn2un2

ay =
dv

dt
= −0.0981− cd

m

√
un2 + vn2vn2

(6)

When the disk touches a side of the container, the velocity and position equations change due
to losses from damping. Using the right wall as an example:

xnp1 = 1− r

dtnew =
xnp1− xn

un
ynp1 = yn+ dtnew ∗ vn

unp1 = −α ∗ un
vnp1 = β ∗ vn

(7)

3 Algorithms

The MATLAB algorithm used to simulate a bouncing circular disk consists of accounting for the
change in position and velocity of the center of mass of the disk during the time span of 60 second.

To model this, you must use a function given on gauchospace called DrawDisk in order to depict
a disk on the plot. The next step is to evaluate the position and velocity of the disk’s center of
mass at every time step interval, given to be 0.03s. Since the Euler’s scheme is used, there will
be a different value at each discrete time step. Each value of position and velocity are dependant
on the previously calculated value over this discretized time span. In this case, we considered the
damping effects of air α and energy loss due to collision β which will eventually stop the disk’s
motion.

2

ME 17 HW2 Alex Nguyen

Once the equations for position, velocity, and acceleration are derived it is important to know
what will happen to our disk once it reaches one of the borders (or boundaries) of the plot. In
order to address how the disk will bounce off the wall, we need to figure out two things: collision
detection and how the disk will react to the wall. When dealing with the ”container”, we would
like the disk to stay inside the boundary. This will require several if-statements to ensure the disk
will not go outside the specified axis. As shown in the code below, at each boundary there will
be an updated position and velocity value depending on which side of the container the disk will
collide with. The new velocity and position values derived under the assumption there are losses
due to damping, which also will affect acceleration.

4 Implementation in Matlab and Results

The Matlab implementation, with comments, is given here:

%ME17: Solving Ordinary Differential Equations - Alex Nguyen

%Note: I confirm that I did not use codes from the web or from past years’

%assignments and that the work that I submit is my own and my own only.

clc

clf

clear all

m = 1; %mass [kg]

cd = 0.25; %drag coefficient [kg/s]

alpha = 0.8; %normal velocity damping coefficient

beta = 0.99; %tangential velocity damping factor

r = 0.05; %disk radius [m]

un = 0.3; vn = 0; %initial velocity [m/s]

xn = 0.5; yn = 1 - r; %initial position [m]

ax = 0;ay = -0.0981; %initial acceleration [m/s^2]

dt=0.03; %time step [s]

t = 0; %time starts at zero [s]

tfinal=60; %final time value [s]

while t<tfinal

if t+dt>tfinal

dt=tfinal-t;

end

3

ME 17 HW2 Alex Nguyen

unp1 = un + dt*ax; %updated x-velocity

vnp1 = vn + dt*ay; %updated y-velocity

xnp1 = xn + dt*un; %updated x-position

ynp1 = yn + dt*vn; %updated y-position

%Right Wall Detection

if xnp1+r>1

xnp1 = 1-r;

dtnew = (xnp1 - xn)/un; %new time

ynp1 = yn + dtnew*vn;

unp1 = -alpha*un;

vnp1 = beta*vn;

end

%Bottom Wall Detection

if ynp1<r

ynp1 = r;

dtnew = (ynp1 - yn)/vn; %new time

xnp1 = xn + dtnew*un;

unp1 = beta*un;

vnp1 = -alpha*vn;

end

%Left Wall Detection

if xnp1<r

xnp1 = r;

dtnew = (xnp1 - xn)/un; %new time

ynp1 = yn + dtnew*yn;

unp1 = -alpha*un;

vnp1 = beta*vn;

end

%Top Wall Detection

if ynp1>1-r

ynp1 = 1-r;

dtnew = (ynp1 - yn)/vn; %new time

xnp1 = xn + dtnew*xn;

unp1 = beta*un;

4

ME 17 HW2 Alex Nguyen

vnp1 = -alpha*vn;

end

%Draw Disk

Draw_Disk(xnp1,ynp1,r);

axis equal;

hold on %shows disk path

axis([0 1 0 1]);

pause(0.01*dt);

%Update Variables in loop

t = t + dt; %updated time

xn = xnp1; yn = ynp1; %position

un = unp1; vn = vnp1; %velocity

ax = 0-(cd/m)*sqrt(un^2+vn^2)*un; %x-acceleration

ay = -0.0981-(cd/m)*sqrt(un^2+vn^2)*vn; %y-acceleration

end

5

ME 17 HW2 Alex Nguyen

(a) Initial Position

(b) Disk Position at t = 20s

(c) Disk Position at t = 60s

Figure 1: Varying Disk Position Over Time Span

6

