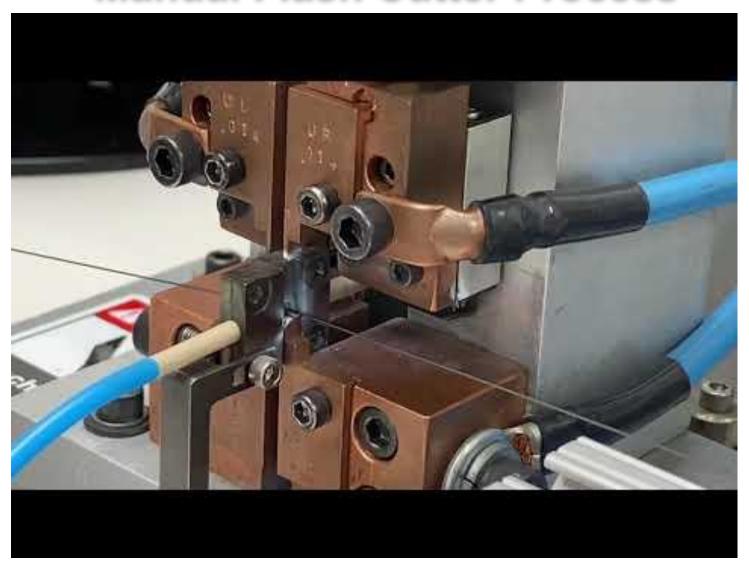


Strand Products Automated Cable Cutter

Cutting Cables, Cutting Costs

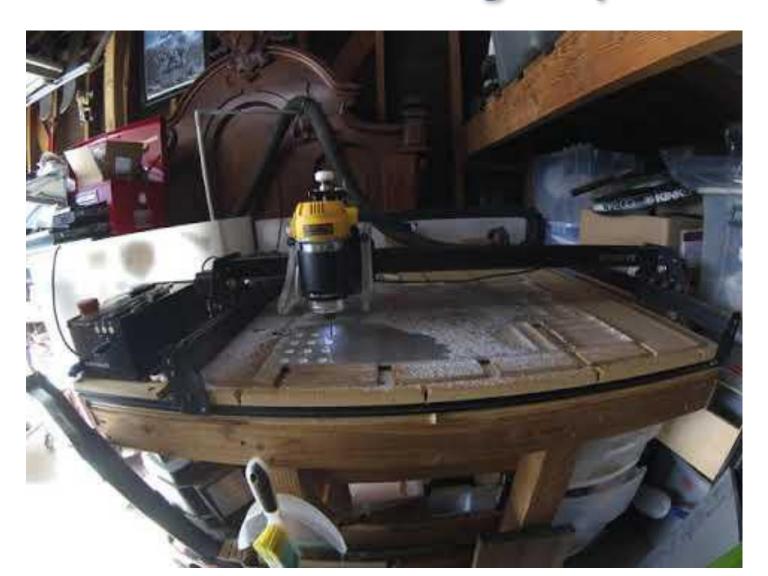
Design Competition 2020


Cutting Cables, Cutting Costs

The Task

- Automate cutting process of Ewald Flash Cutter
 - Be able to operate either automated or manually

Manual Flash Cutter Process



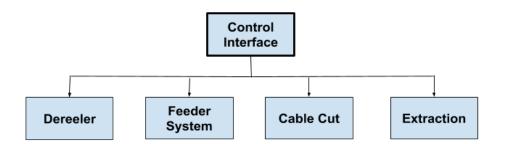
Automated Flash Cutter Process

Kaya

Covid-19 Manufacturing Response

Kaya

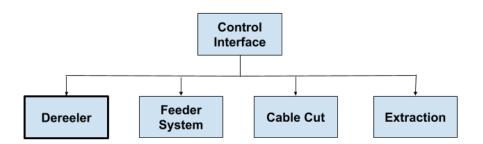
Manufactured Parts



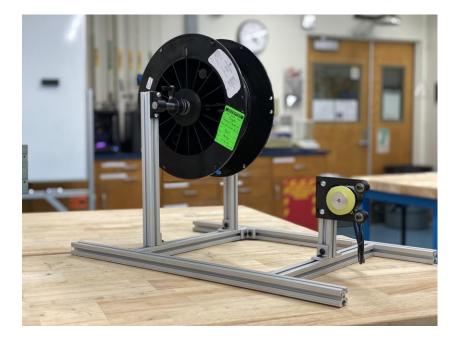
System Overview Start **Touchscreen** Open Extraction GUI **Extraction** Feed Stepper 1 Close Extraction Open Feeder Feed Stepper 2 Close Feeder Cut Cable Feed Stepper 2 Dereeler Feeder **Cable Cut** Finish

Vance

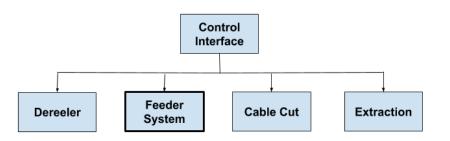
- Nextion Enhanced 7" Touch Screen
 - Integrated processor


- Features
 - Setup
 - Manual Feed
 - Job Submission / Progress Page

Touchscreen GUI



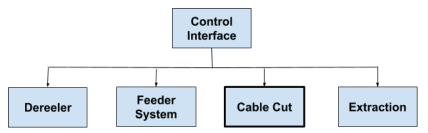
Vance



Dereeler

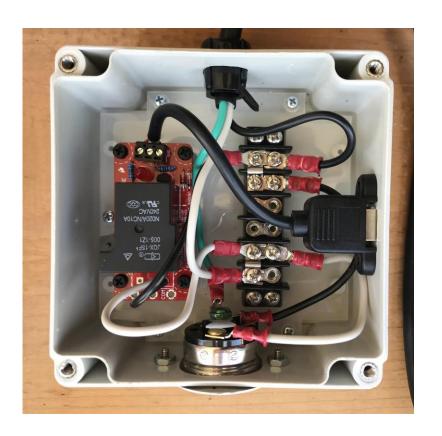
- Tensioned spool holder and cable dereeler system
- Spring-loaded plates provide friction & tension

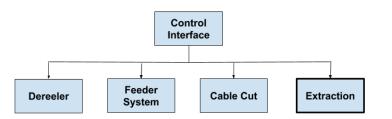
Vance



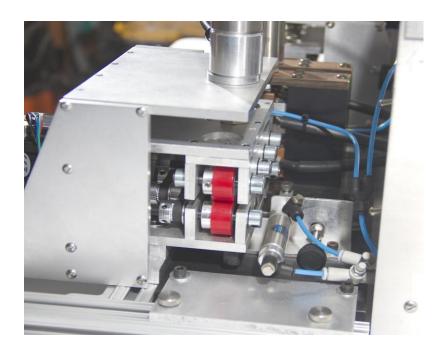
Feeder System

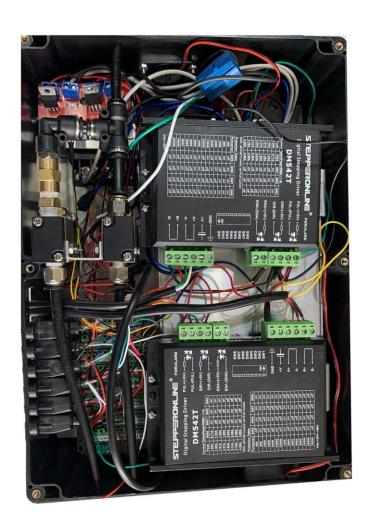
- > Roller wheels in series driven by a stepper motor
 - Quick Disconnect system




Foot Pedal Automation

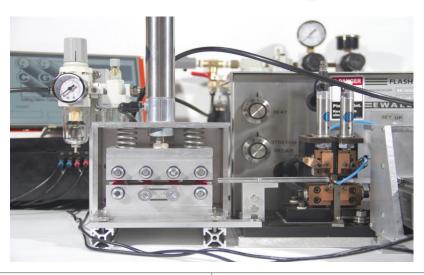
Allows for both automated and manual operation



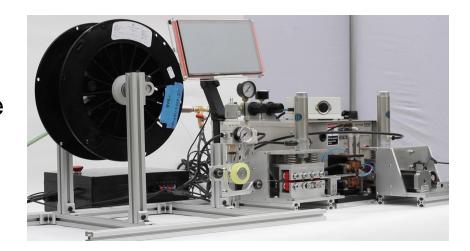

Extraction System

- Spring-loaded wheels keep the cable in tension
- Extraction system mimics the feeder system

Electronics Box



Alex


Calculated Safety Factors

SF _{cable slip}	2.9
SF _{tension cut}	4.5
SF _{spring force}	2.5
N _{spring life}	>10 ⁷ cycles

CG Automation Summary

- Increased work efficiency
- Simple touchscreen user-interface
- Versatile manual or automated cutting job

Cutting Cables, Cutting Costs

Appendix Slides

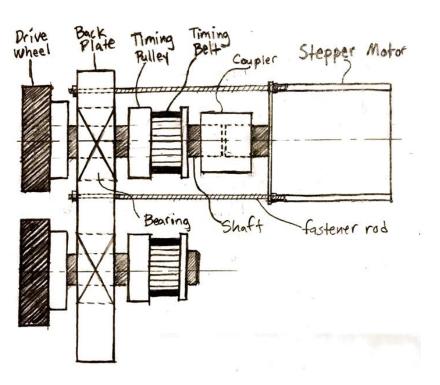
Spring Quarter Recap

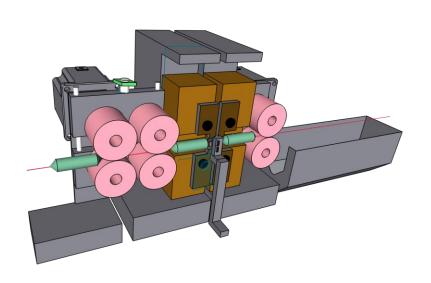
- Plan of action developed for spring quarter
- Manufactured & constructed the final prototype
 - The feeder & extraction subsystems
 - Foot pedal integration box
 - Electrical housing
 - Mounting
- Performed analysis & testing on final prototype
- Finalized and tweaked written Arduino IDE code

Whos Did What?

- 1. Chris led the manufacturing of mechanical components for the various subsystems with other members adhering to social distancing protocols
- Kaya, Jake, and Vance led CAD model revisions, GD&T, and various tests
- 1. Kaya managed the team's finance while members ordered parts for their different delegated tasks
- 1. Jake worked on electro-mechanical integration by scripting code for the Arduino MEGA to communicate with the various sensors and actuators
- Alex handled electrical hardware management by creating an electrical spreadsheet and schematic to aid construction of a PCB
 - a. Also, handled meeting scheduling and other logistical tasks

Project Deliverables


Engineering Requirements

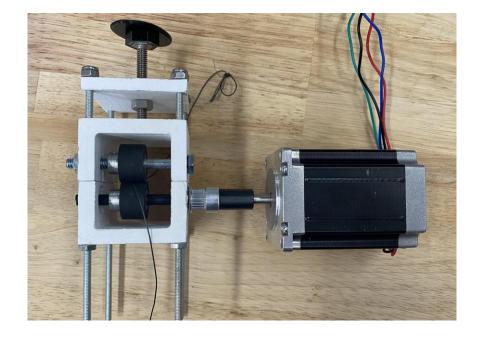

	<u>Deliverables</u>	Final Product
Tolerance	 ❖ 3" to 30": ±1/64" ❖ 30" to 60": ±1/32" ❖ 60" to 100": ±1/16" 	 ❖ 3" to 30": ~ ❖ 30" to 60": ~ ❖ 60" to 100": ~
Cut Lengths	3" - 100"	3" - 100"
Cycle Time	< 30 s	< 5 s
Cable Diameters	0.006" - 0.050"	0.006" - 0.050"
User Inputs	# Cable CutsLength (in/mm)Emergency StopPause & Resume	 # Cable Cuts Length (in/mm) Emergency Stop Pause & Resume Progress Bar Exit Job

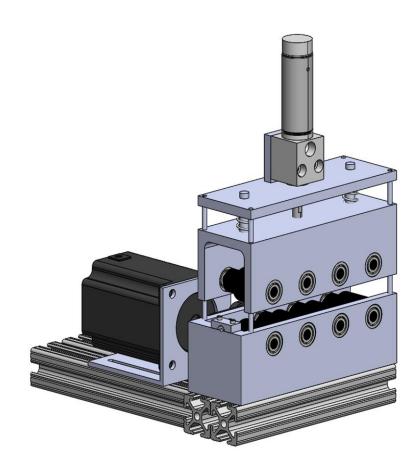
Feeder System Evolution

Feeder Prototype Engineering Drawing

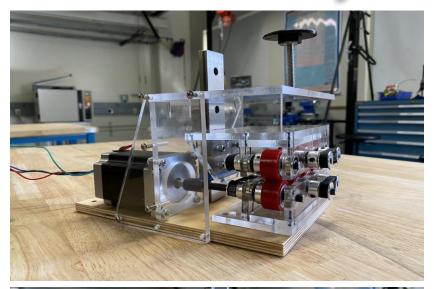
Fall Quarter 2019

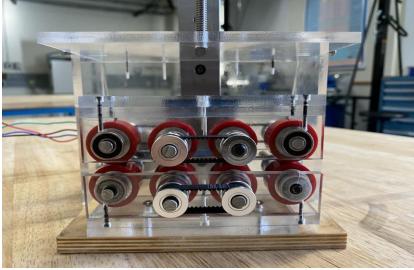
Feeder Prototype V1

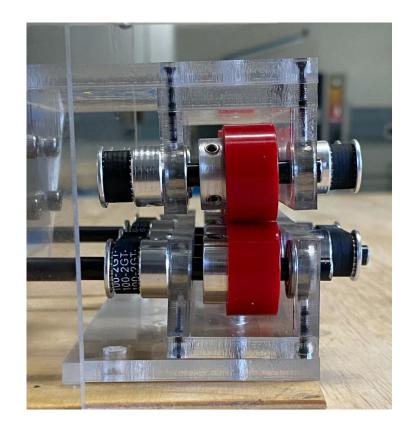




Feeder System Prototype V2

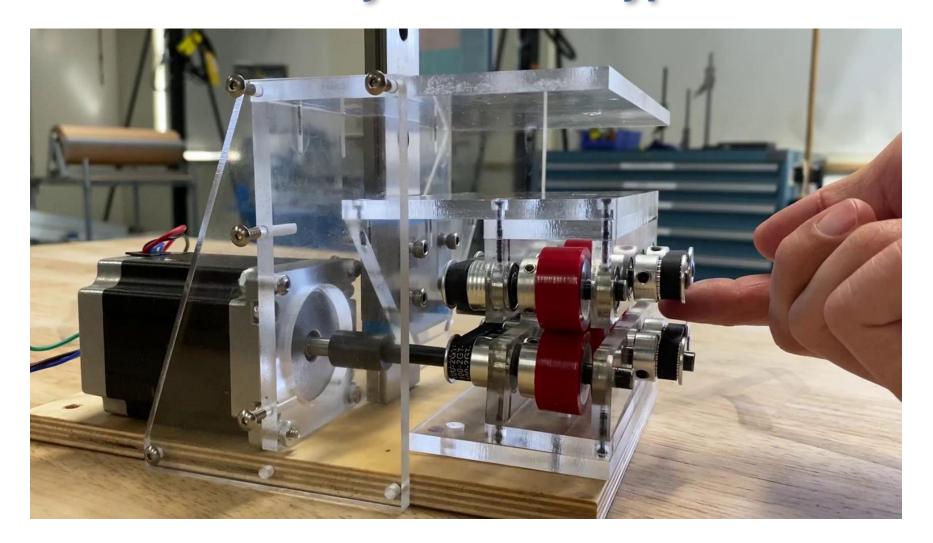


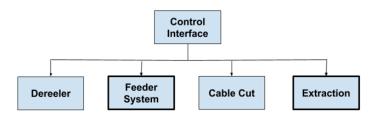

Feeder Prototype Initial CAD



Winter Quarter 2020

Feeder System Prototype V3




Feeder System Prototype V3

Feeder System Final Product

Feeder & Extraction System Actuation

- Spring-loaded feeder & extraction system
 - Appies constant pressure to wheels
- Pneumatic Cylinder
 - Compressed air acts on a piston inside a cylinder to move a load along a linear path
 - Feeder & Extraction System
 - The actuator controls tension and slack in cable
 - Compress springs to separate wheels
 - Release springs to bring wheels back together

Lpd3806-600bm-G5-24c Incremental Optical Rotary Encoder

Mechanical Specifications:

- Starting Torque: 1.5*103 Nm

Moment of Inertia: 3.5*6 kgm²

Shaft loading/Radial: 10 N

Thrust loading/Radial: 20 N

Max Allowable Revolution: 2000 rpm

Net Weight: 100 g

Electrical Specifications:

- Resolution: 600 pulses/revolution

Operating voltage: DC5-24V

Max Current Consumption: 40 mA

Max Response Frequency: 30 kHz

- Maximum Mechanical Speed: 5000 rev/min

Integrated Speed: 2000 rev/min

Environment:

Ambient Temperature: -20 to 80 °C

- Storage: -25 to 85 °C

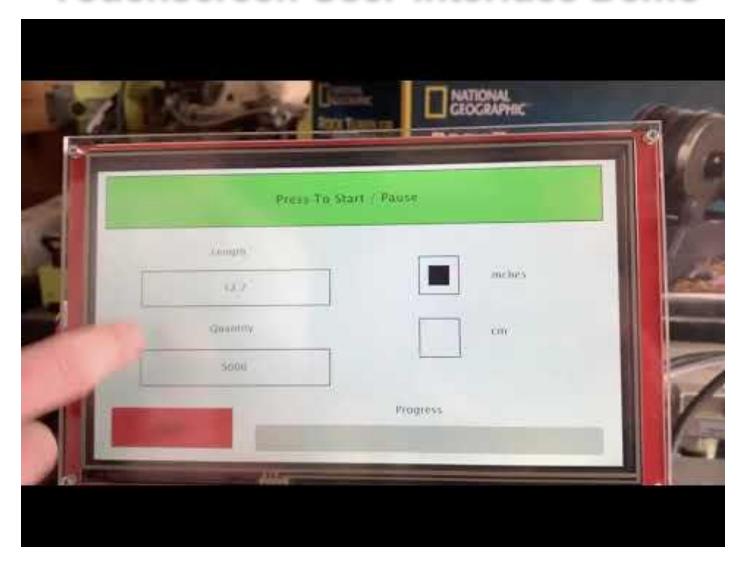
- Ambient Humidity: 35 - 85 %

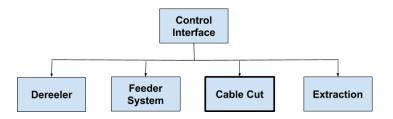
Degree of Protection: IP50

Vibration: 50 m/s², 10-200 HZ

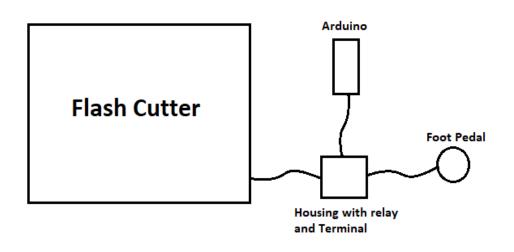
- Shock: 980 m/s², 6ms

Kaya

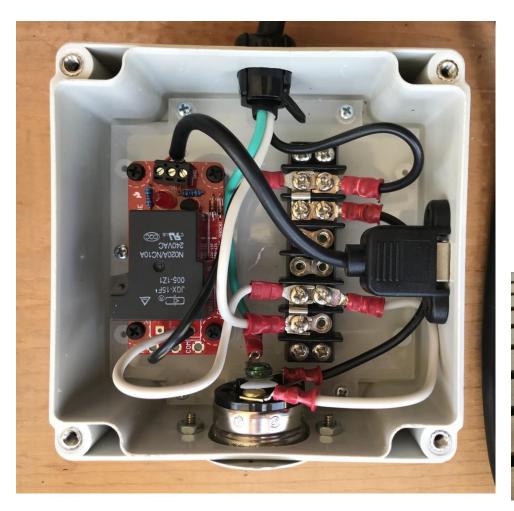

Manufactured Feeder & Extraction Parts

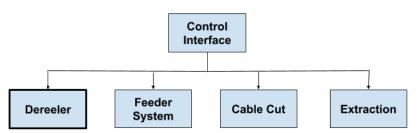

Detailed Subsystem Descriptions

Touchscreen User-Interface Demo

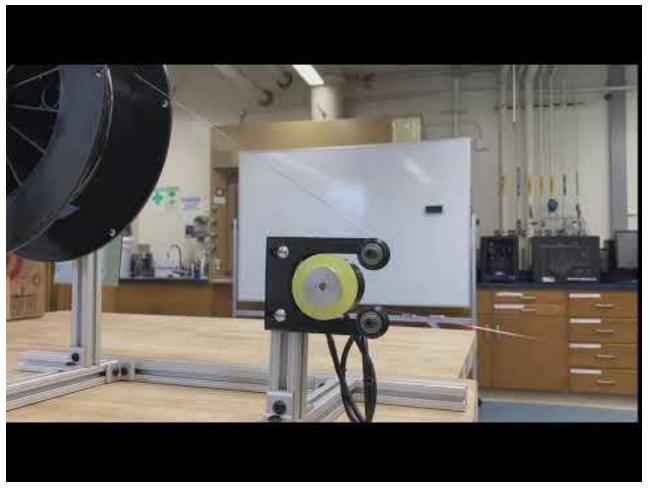


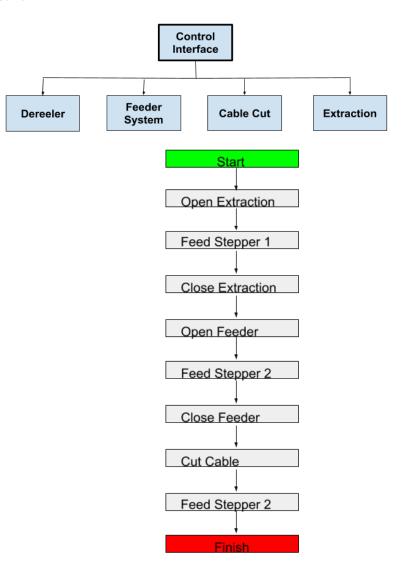
Foot Pedal Automation


- > Foot pedal is a switch that closes an AC circuit
 - Midget locking plug
- Relay in parallel with the foot pedal
 - Allows for automated and manual operation


Jake

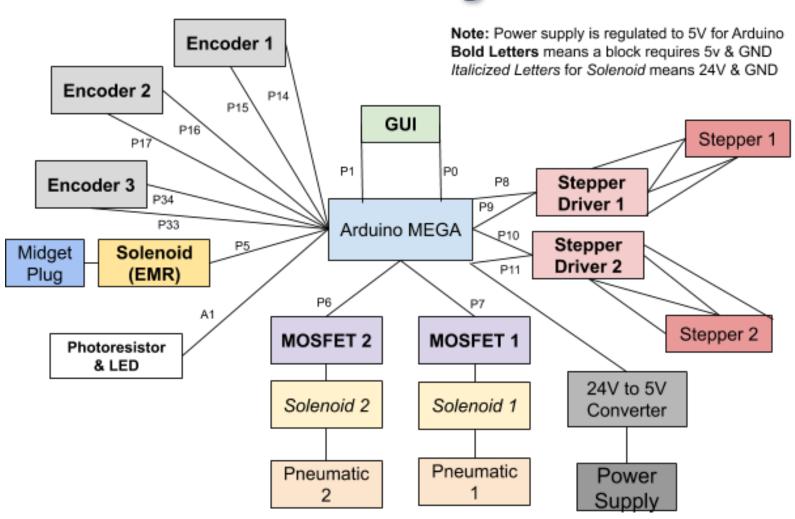
Foot Pedal Integration

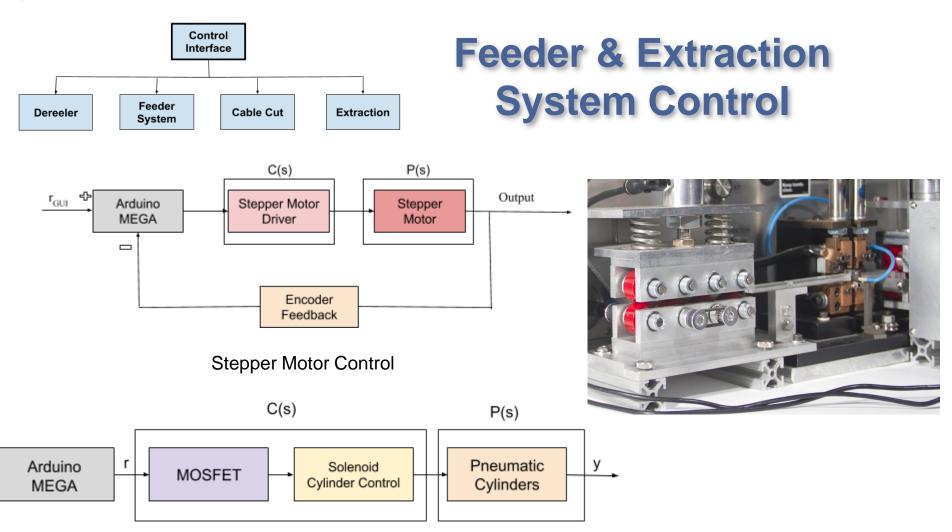




Spool Mount and Tension System V1

Jake

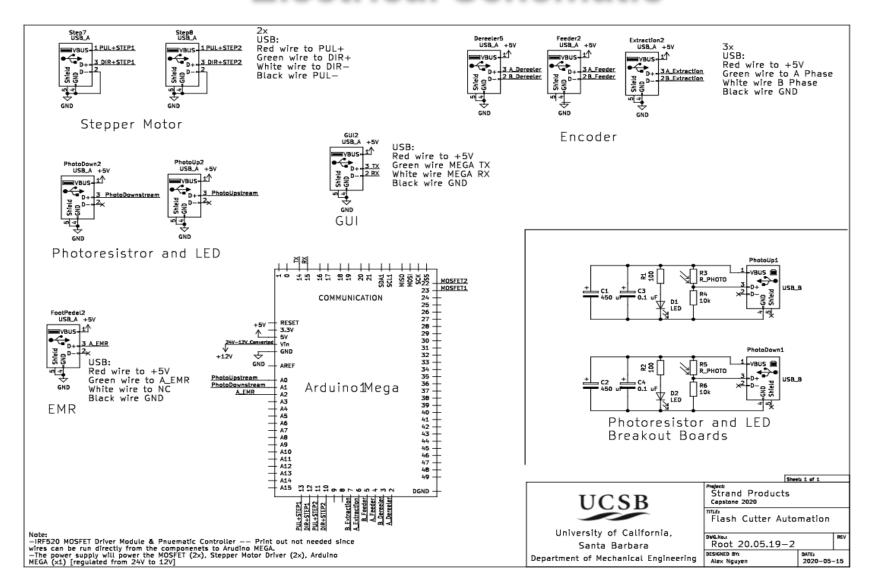

Block Diagram Explanation


Arduino Code Flowchart

```
digitalWrite(air2, HIGH);
stepper1.step(1910);
digitalWrite(air2, LOW);
delay(250);
digitalWrite(air1, HIGH);
stepper2.step(-(steps - 1910));
digitalWrite(air1, LOW);
digitalWrite(cut, HIGH);
delay(2000);
digitalWrite(cut, LOW);
stepper2.setSpeed(150);
stepper2.setSpeed(40);
```

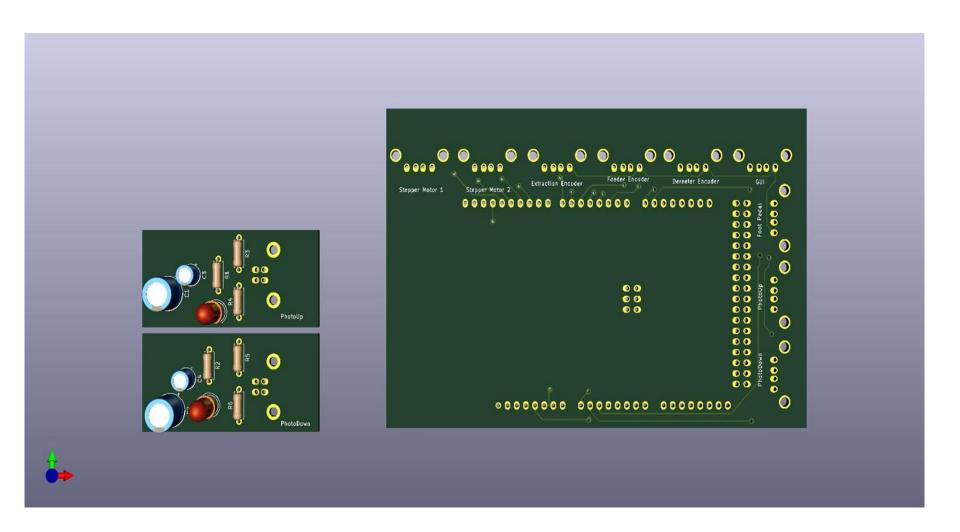
Arduino IDE code

Electrical Wiring Schematic

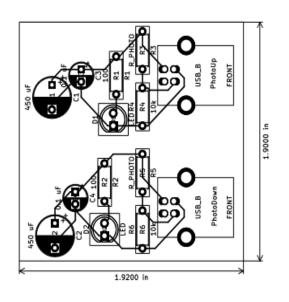


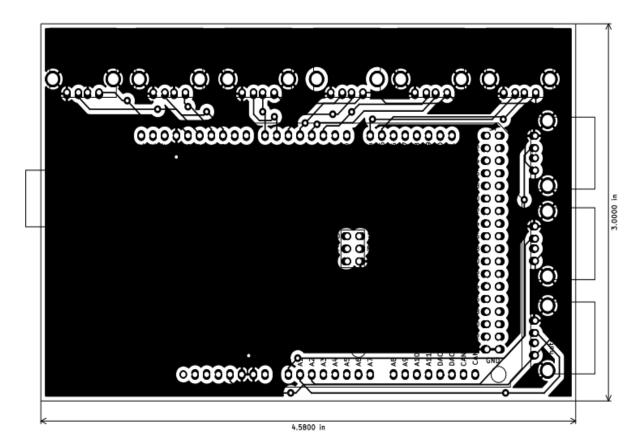
Pneumatic Cylinder Control

Printed Circuit Board (PCB)

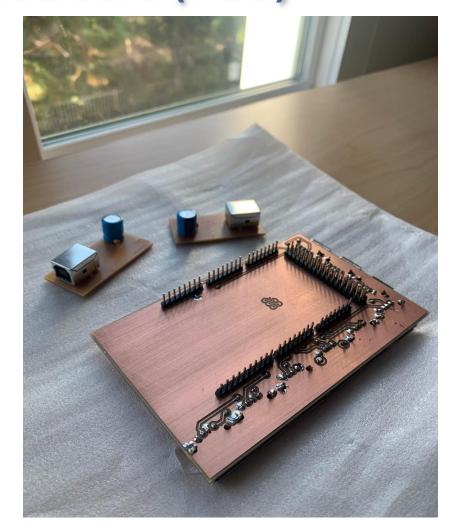


Electrical Schematic




PCB 3D-View

PCB Dimensions



Printed Circuit Board (PCB)

Prototype Analysis

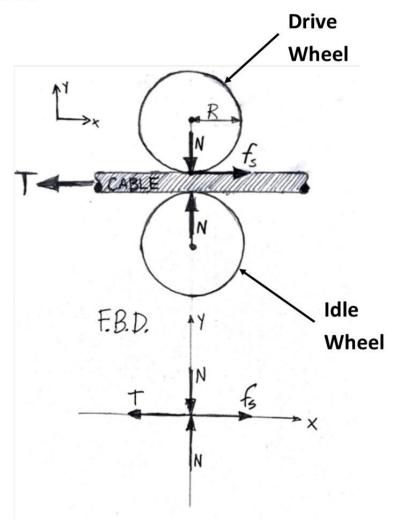
FBD Analysis of Single Wheel Feeder System

T: tension

R: radius of wheel

N: normal force/clamping

force


 f_s : friction force, $f_s = \mu_s N$

<u>Assumptions</u>: Idle wheel acts as frictionless roller

$$\sum F_y = 0 = f_s - T$$

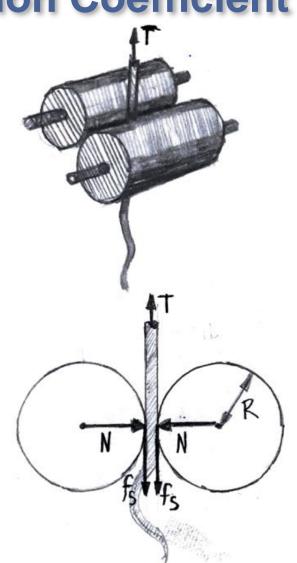
$$\mu_s N - T = 0$$

$$N = \frac{T}{\mu_s}$$

Determining Static Friction Coefficient

T: tension

R: radius of wheel


N: normal force/clamping

force

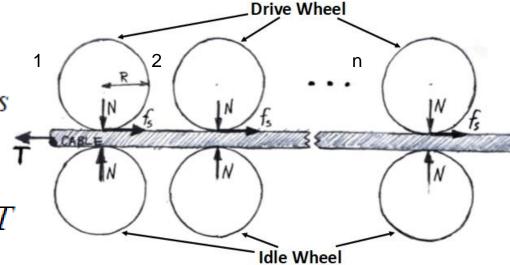
 f_s : friction force, $f_s = \mu_s N$

$$\Sigma F_y = 0 = T + 2f_s$$

$$\mu_s = \frac{T}{2N}$$

Kaya

Feeder & Extraction System Wheel Number


$$T = tension$$

$$T = 10 lbs$$

$$f_s = friction force = \mu * N$$

$$f_{s,experimental} = 3 lbs$$

n = number of pairs of wheels

$$\sum F_{horizontal} = 0 = n * f_s - T$$

$$n * \mu * N = T$$

$$n = \frac{T}{\mu * N} = \frac{T}{fs}$$

$$n = \frac{10}{3} \approx 4$$
 wheel pairs

Dereeler Tension Analysis

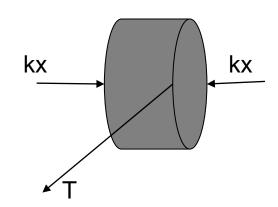
Assumptions:

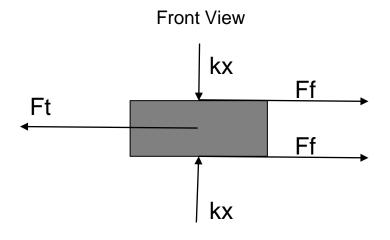
- 1. $\Delta x = 0.5$ " (Spring Compress 0.5")
- 2. $\mu = 0.1$ Polyethylene (HDPE)
- 3. Normal Force = Spring Force

Spring Constant:

$$k = 53 \frac{\text{lb}}{\text{in}}$$

$$\rightarrow k_{eff} = 2k = 106 \frac{\text{lb}}{\text{in}}$$


Spring Force:


$$F_{spring} = k_{eff} \Delta x$$

= (106)(0.5) = 53 lb

Friction Force:

$$F_f = \mu F_{spring} = (0.1)(53)$$

= 5.3 lb

 \implies Dereeler cable tension needs to be ≥ 5.3 lbs

Top View

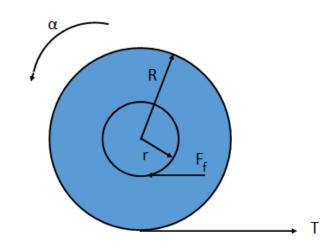
1. https://www.engineersedge.com/coeffients_of_friction.htm

Dereeler Dynamic Analysis

Assumptions:

- 1. Frictional Force Acts as a Vector
- 2. Only Considering Carbon Steel Rod, Cable Spool, and Spool Adapter Inertia
- 3. Forces: T (tension at feeder), F_f (Spool Adapter Friction Force), and F_r (Carbon Steel Rod Friction Force)

Torque:


$$\sum \tau = TR - F_f r - F_r r$$

Inertia:

$$\begin{split} I &= \frac{1}{2}MR^2 + 2\frac{1}{2}m_{sa}r^2 + \frac{1}{2}m_rr^2 \\ &= \frac{1}{2}MR^2 + (m_{sa} + \frac{1}{2}m_r)r^2 \end{split}$$

Angular Acceleration:

$$\alpha = \frac{\sum \tau}{I} \\ = \frac{TR - (F_f + F_r)r}{\frac{1}{2}MR^2 + (\frac{1}{2}m_r + m_{sa})r^2}$$

I: Moment of Inertia

α: Angular Acceleration

T: Cable Tension

R: Spool Radius

r: Frictional Force Radius

μ: Kinetic Friction Coefficient

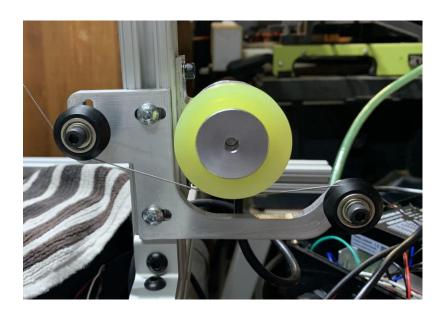
k: Spring Constant

x: Spring Displacement

Cable Capstan Tension

Assumptions:

- 1. $\mu_{cap} = 0.2$ V-Groove Wheel Coefficient
- 2. Wrap Angles: $\phi_1 = \frac{\pi}{4}$ (Pulley 1), $\phi_2 = \frac{\pi}{3}$ (Encoder), and $\phi_3 = \frac{\pi}{4}$
- 3. P_{hold} = Friction Force


Capstan Force:

$$T = F_f e^{[\mu_{cap}(\phi_1 + \phi_2 + \phi_3)]}$$

$$= (5.3)e^{[(0.2)(\frac{\pi}{4} + \frac{\pi}{3} + \frac{\pi}{4})]}$$

$$= 8.95 \text{ lb}$$

⇒ Tension in cable at the feeder system is 8.95 lbs

Dereeler Cable Angle

Feeder System Spring Analysis

Assumptions:

- Equilibrium Spring Length, $x_0 = 1.5$ in
- Current Spring Length, x = 1.1565 in
- Spring Constant, $k = 60 \frac{lb}{in}$
- Wire Diameter, d = 0.105 in
- Outer Diameter, OD = 0.97

Effective Spring Constant:

$$K_{eff} = 2k = 120 \frac{lb}{in}$$

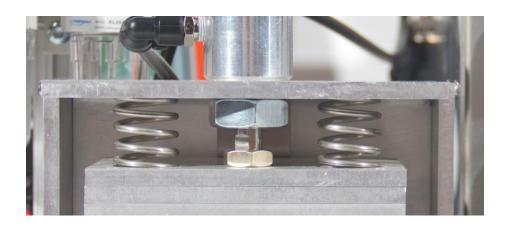
Spring Index:

$$C = \frac{D}{d} = 9.238$$

Effective Max Spring:

$$F_{eff max} = (2)(50.4 lb) = 100.8 lb$$

Spring Force (Both):


$$\begin{array}{rcl} F_{Spring} & = & k_{eff}(x_0 - x) \\ & = & \underbrace{(120 \; \frac{lb}{in})}_{in} (1.5 \; in - 1.1565 \; in) \\ & = & \underbrace{41.22 \; \text{lb}}_{} \end{array}$$

Spring Safety Factor:

$$SF_{spring} = \frac{F_{effmax}}{F_{Spring}}$$

$$= \frac{100.8 \ lb}{41.22 \ lb}$$

$$= 2.4454$$

Feeder/Extraction System Springs

Feeder System Pneumatic Force

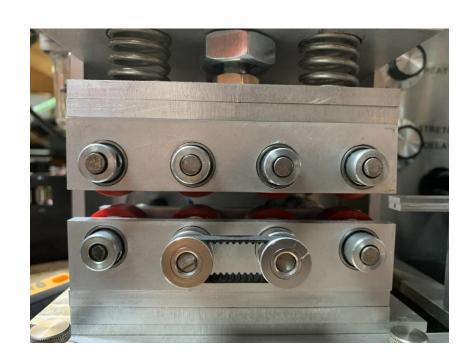
Known:

- Bore Diameter, $d_{bore} = 1.25$ in
- Stroke, S = 1.5 in
- Available Pressure, P_{avail} = 80 psi
- Piston Area, $A_{piston} = \frac{\pi d_{bore}^2}{4} = 1.2272 \ in^2$

Pneumatic Force:

$$F_{avail} = P_{avail}A_{piston}$$

$$= (80)(1.2272)$$


$$= 98.2 \text{ lb}$$

Displacement Check:

$$\Delta x = \frac{(F_{avail} - 4F)}{k_{eff}}$$

$$= \frac{(98.2 - 41.2)}{120}$$

$$= \boxed{0.475 \text{ in}}$$

Pneumatic Actuator Distance

Safety Factor Calculations

Known:

- Neoprene Friction Coefficient on Tungsten $\mu = 0.62$
- Feeder System Normal Force, $F_N = 41.22$ lb
- Feeder System Force, $F_{pull} = 8.95 \text{ lb}$
- Tension Required to Cut, T = 2 lb
- Max Spring Force, $F_{s,max} = 100.8$ lb

Wheel Clamp:

$$SF = \frac{\mu F_N}{F_{pull}}$$

$$= \frac{25.5565 \text{ lb}}{8.95 \text{ lb}}$$

$$= \boxed{2.86}$$

Cable Cut:

$$SF = \frac{F_{pull}}{T}$$

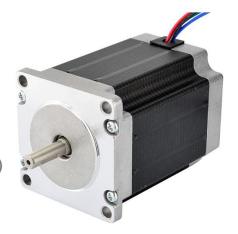
$$= \frac{8.95 \text{ lb}}{2 \text{ lb}}$$

$$= \boxed{4.47}$$

Feeder and Extraction Springs:

$$SF = \frac{F_{s,max}}{F_N}$$

$$= \frac{100.8 \text{ lb}}{41.22 \text{ lb}}$$


$$= 2.45$$

Step Size Calculations

Known:

- Wheel Diameter, D = 1.0"
- Stepper = $1.8 \frac{\text{degree}}{\text{step}}$
- Microstep Resolution = $0.45 \frac{\text{degree}}{\text{pulse}}$ (Stepper Driver can vary from 400 to 25000 $\frac{\text{pulse}}{\text{rev}}$)

Cable Length, $S = r\theta$ where S: arc length, r: radius, and θ : angle

Stepper Motor:

Step Resolution: 200 $\frac{\text{steps}}{\text{rev}} \rightarrow 1.8 \frac{\text{degree}}{\text{step}}$

Minimum Step Size:

$$S = \frac{D}{2}\theta$$

= $\frac{1.0}{2} \frac{1.8\pi}{180}$
= 0.0157 in

Stepper Driver Micro-Step:

Step Resolution: 800 $\frac{\text{pulse}}{\text{rev}} \rightarrow 0.45 \frac{\text{degree}}{\text{pulse}}$

Minimum Step Size:

$$S = \frac{D}{2}\theta$$

= $\frac{1.0}{2} \frac{0.45\pi}{180}$
= 0.0039 in

Encoder Resolution

Known:

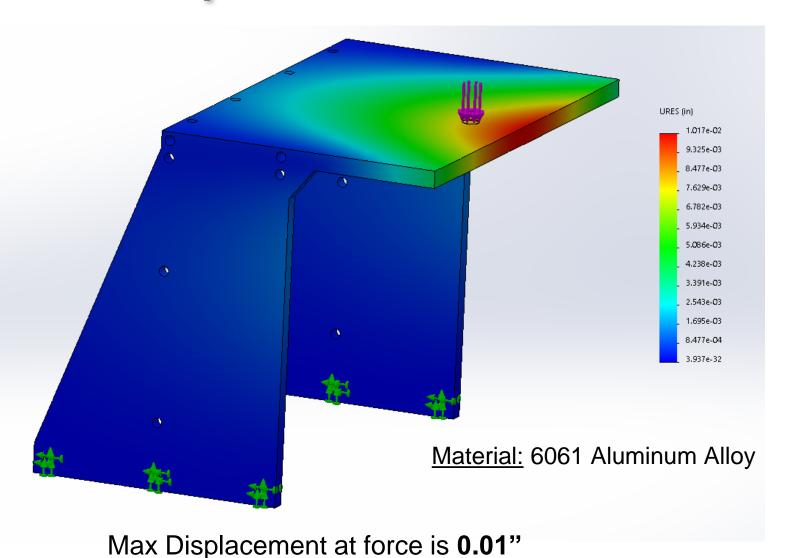
- Encoder Resolution = $600 \frac{\text{pulse}}{\text{rev}}$
- Encoder Wheel Diameter: $D_d = 1.9685$ " (Dereeler), $D_f = 1.0$ " (Feeder), and $D_e = 1.0$ " (Extraction)

Dereeler: Wheel Diameter: $D_d = 1.9685$ "

$$\frac{\text{pulse}}{\text{length}} = \left(\frac{600 \text{ pulse}}{\text{rev}}\right) \left(\frac{1 \text{ rev}}{\pi D_d} \text{ in}\right)$$
$$= \frac{600 \text{ pulse}}{6.1842 \text{ in}}$$

 \therefore Length per Pulse = 0.0103 $\frac{\rm in}{\rm pulse}$

Feeder Extraction: Wheel Diameter: $D_d = 1$ "

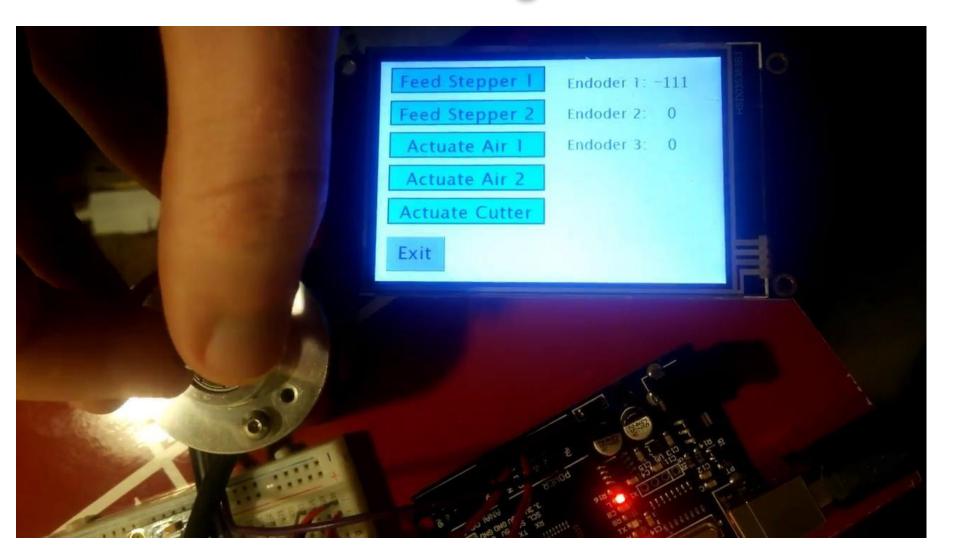

$$\frac{\text{pulse}}{\text{length}} = \left(\frac{600 \text{ pulse}}{\text{rev}}\right) \left(\frac{1 \text{ rev}}{\pi D_f} \text{ in}\right)$$
$$= \frac{600 \text{ pulse}}{1.5708 \text{ in}}$$

 \therefore Length per Pulse = 0.0026 $\frac{\rm in}{\rm pulse}$

 \rightarrow The encoders on each subsystem will be able to reach all tolerance values. Although, the feeder and extraction subsystem encoders will be the most accurate.

Max Displacement Simulation

Prototype Testing


Wheel Slip Test Results

Wheel(s)	Force (lbs)		
Upstream	3		
Downstream	3		
Both	6.6		

- The force was measured with an electronic fish-scale
- When tested independently, upstream and downstream wheel sets gave identical results
- Results may differ with new materials & build

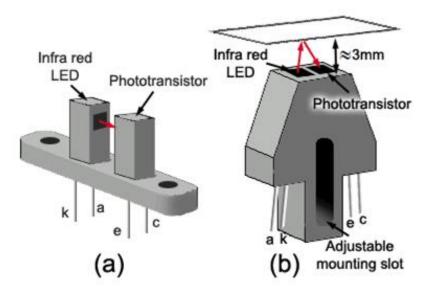
Encoder Counting Revolutions

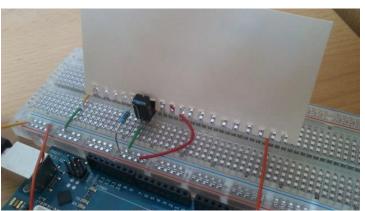
Pneumatic Cylinder Test

Sensors

Sensor Testing

➤ Break-Beam Sensor


> Photoresistor with LED



Break Beam Sensor Test

- Goal: Find the hole size which breaks the laser's path
- Machine Aluminum sheet
 - Drill various hole sizes
- Align sheet holes with the photoresistor aperture
 - Detect passing cable

Break-Beam Test

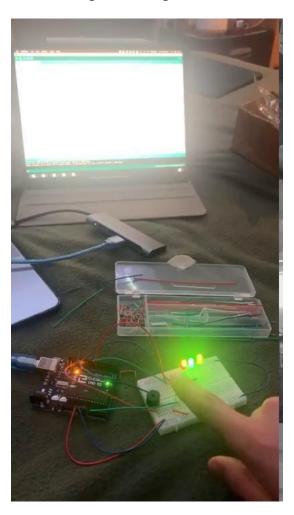
- ➤ Machined aluminum test plate
- > 0.1875" to 0.041"
- > "Does sensor detect obstruction?"

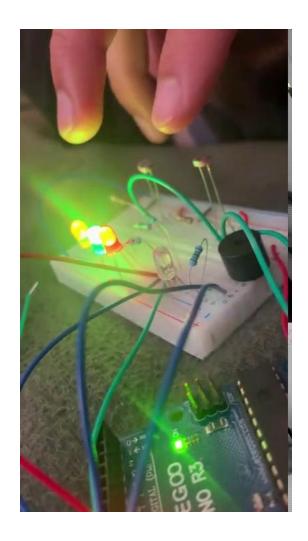
RESULTS

Hole Size (inch)	Obstruction Detection (Y/N)		
3/16	No		
5/32	No		
9/64	No		
1/8	No		
7/64	No		
3/32	No		
5/64	No		
1/16	No		
0.052	No		
0.041	No		

Sensor Fault Detection Result

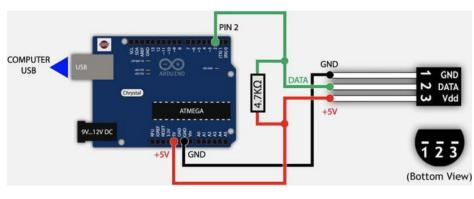
> Photoresistor with LED


- Guide tube ambient light detection
 - Extraction tube only
- Sequence integration


Sensor Demo

Single Configuration

Photoresistor Dual Configuration



I.R. Temperature Sensing

- ➤ IR Temperature Sensor
 - Electronics box thermals

Temperature Sensor Test Results

```
F5XAS9CIFMTNEBR
#include <OneWire.h>
#include <DallasTemperature.h>
// Data wire is plugged into pin 2 on the Arduino
#define ONE_WIRE_BUS 2
// Setup a oneWire instance to communicate with any OneWire devices
// (not just Maxim/Dallas temperature ICs)
OneWire oneWire(ONE_WIRE_BUS);
// Pass our oneWire reference to Dallas Temperature.
DallasTemperature sensors(&oneWire);
void setup(void)
 // start serial port
 Serial.begin(9600);
 Serial.println("Dallas Temperature IC Control Library Demo");
 // Start up the library
 sensors.begin();
void loop(void)
 // call sensors.requestTemperatures() to issue a global temperature
 // request to all devices on the bus
 Serial.print(" Requesting temperatures...");
 sensors.requestTemperatures(); // Send the command to get temperatures
 Serial.println("DONE");
 Serial.print("Temperature is: "):
 Serial.print(sensors.getTempFByIndex(0)); // Why "byIndex"?
   // You can have more than one IC on the same bus.
   // 0 refers to the first IC on the wire
   delay(1000);
```

```
15:14:40.668 -> Temperature is: 73.96 Requesting temperatures...DONE
15:14:42.395 -> Temperature is: 73.74 Requesting temperatures...DONE
15:14:44.094 -> Temperature is: 73.40 Requesting temperatures...DONE
15:14:45.819 -> Temperature is: 73.51 Requesting temperatures...DONE
15:14:47.515 -> Temperature is: 73.51 Requesting temperatures...DONE
15:14:49.249 -> Temperature is: 73.62 Requesting temperatures...DONE
15:14:50.956 -> Temperature is: 73.74 Requesting temperatures...DONE
15:14:52.663 -> Temperature is: 73.74 Requesting temperatures...DONE
15:14:54.386 -> Temperature is: 73.74 Requesting temperatures...DONE
15:14:56.080 -> Temperature is: 73.62 Requesting temperatures...DONE
15:14:57.798 -> Temperature is: 73.51 Requesting temperatures...DONE
15:14:59.534 -> Temperature is: 73.51 Requesting temperatures...DONE
15:15:01.216 -> Temperature is: 73.51 Requesting temperatures...DONE
15:15:02.943 -> Temperature is: 73.51 Requesting temperatures...DONE
15:15:04.662 -> Temperature is: 73.40 Requesting temperatures...DONE
15:15:06.353 -> Temperature is: 73.40 Requesting temperatures...DONE
15:15:08.061 -> Temperature is: 73.29 Requesting temperatures...DONE
15:15:09.797 -> Temperature is: 73.18 Requesting temperatures...DONE
15:15:11.505 -> Temperature is: 73.18 Requesting temperatures...DONE
15:15:13.227 -> Temperature is: 73.29 Requesting temperatures...DONE
15:15:14.915 -> Temperature is: 73.29 Requesting temperatures...DONE
15:15:16.641 -> Temperature is: 73.40 Requesting temperatures...DONE
15:15:18.365 -> Temperature is: 73.40 Requesting temperatures...DONE
15:15:20.070 -> Temperature is: 73.51 Requesting temperatures...DONE
15:15:21.777 -> Temperature is: 73.51 Requesting temperatures...DONE
15:15:23.485 -> Temperature is: 73.51 Requesting temperatures...DONE
15:15:25.202 -> Temperature is: 73.29 Requesting temperatures...DONE
15:15:26.934 -> Temperature is: 73.29 Requesting temperatures...DONE
15:15:28.634 -> Temperature is: 73.40 Requesting temperatures...DONE
15:15:30.342 -> Temperature is: 73.40 Requesting temperatures...DONE
15:15:32.065 -> Temperature is: 73.29 Requesting temperatures...DONE
15:15:33.780 -> Temperature is: 73.29 Requesting temperatures...DONE
15:15:35.469 -> Temperature is: 73.18 Requesting temperatures...DONE
15:15:37.188 -> Temperature is: 73.06 Requesting temperatures...DONE
15:15:38.890 -> Temperature is: 72.95 Requesting temperatures...DONE
15:15:40.628 -> Temperature is: 72.72 Requesting temperatures...DONE
15:15:42.322 -> Temperature is: 72.61 Requesting temperatures...DONE
```

Kaya

Final Design Cost

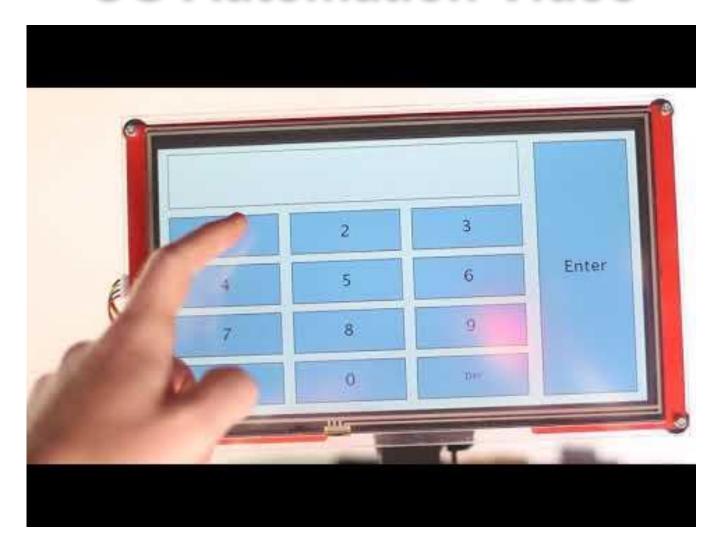
Prototyping	Final Product					
Fall and Winter Quarter	Dereeler	Touchscreen	Feeder/Extractor (Mounting to Flashcutter)	Electronics	Tooling	
\$1350.00	\$200.00	\$155.00	\$1318.00	\$725.00	\$1050.00	

Total = \$4800.00

Acknowledgements

Special Thanks To The Following Individuals:

- → John Hottinger
- → Dasun Hemachandra
- → Syaza Mustafah
- → Chandler Bartz
- → Dr. Tyler Susko
- → Dr. Trevor Marks



CG Automation Video

