
ME 17 HW5 Alex Nguyen

Solving the Diffusion Equation in 2D

Note: I confirm that I did not use codes from the web or from past years’ assignments and
that the work I submit is my own and my own only.

1 Introduction

The goal of this assignment is to solve the diffusion equation for the concentration u = u(x, y, t):

∂u

∂t
= D(

∂2u

∂x2
+
∂2u

∂y2
) + S (1)

where D is the diffusion coefficient and S is the source term given by the following equation:

S(x, y, t) = (2D − 1)exp(−t)sin(x)cos(y)

The diffusion equation is within the domain [-1,1]x[-1,1] and solved for with the initial condition:

u(x, y, t = 0) = sin(x)cos(y)

We can approximate the diffusion equation by the following standard numerical method:

un+1
i,j − uni,j

∆t
= D(

uni+1,j − 2uni,j + uni−1,j

∆x
+
uni,j+1 − 2uni,j + uni,j−1

∆y
) + S(x(i), y(j), tn) (2)

We would like to implement this method in MATLAB for two different cases: Dirichlet and
the Robin case. The Dirichlet (or first-type) boundary condition is a type of boundary condition,
named after Peter Gustav Lejeune Dirichlet. When this boundary condition is imposed on an
ordinary or a partial differential equation, it specifies the values that a solution needs to take on
along the boundary of the domain. The Dirichlet boundary conditions will be applied to the four
walls of the computational domain with the equations u(x,y,t) = exp(-t)sin(x)cos(y).

Whereas the Robin (or third type) boundary condition is a type of boundary condition, named
after Victor Gustave Robin. When this boundary condition is imposed on an ordinary or a partial
differential equation, it is a specification of a linear combination of the values of a function and

1



ME 17 HW5 Alex Nguyen

the values of its derivative on the boundary of the domain. The Robin boundary condition has the
following form:

αu± ∂u

∂x
= exp(−t)cos(y)(αsin(±1) − cos(±1))

αu± ∂

∂y
= exp(−t)sin(x)(αcos(±1) − sin(±1))

with the ± sign depending on which wall you are in the computational domain.

This assignment asks the following:

a) Implement this method in MATLAB in the case of Dirichlet and Robin boundary conditions,
i.e u(x,y,t) = exp(-t)sin(x)cos(y) on the four walls of the computational domain.
b) In both the Dirichlet and the Robin case, compare the results with the exact solution, which is
u(x,y,t) = exp(-t)sin(x)cos(y). Perform accuracy analysis to compute the maximum error between
the numerical and the exact solutions (in absolute value). Show that the error is roughly divided
by 4 when the number of grid points in the x and y directions are both multiplied by 2.

Take ∆t = 0.2∆x2, D = 0.7, α = 2, and tfinal = 0.2 s. For the accuracy analysis, consider the
grids 10x10, 20x20, 40x40, and 80x80.

2 Background

The diffusion equation in 1D is derived to be:

∂u

∂t
= D

∂2u

∂x2
+ S (3)

Where D is the diffusion constant and S is the source term. A numerical approximation can be
made for this differential equation setup, which looks like the following:

un+1
i − uni

∆t
= D

uni+1 − 2uni + uni−1

∆x2
+ Si (4)

The numerical solution can be solved for by isolating the un+1
i term. This will provide you with

the following equation in 1D case:

2



ME 17 HW5 Alex Nguyen

un+1
i = uni + ∆t ·D

uni+1 − 2uni + uni−1

∆x2
+ ∆t · Si (5)

This analysis can be extended into 2D, which is exactly what you will need to do in order to
solve this assignment. The following equations are the derived 2D numerical equations with the
respective source terms and initial conditions (as seen in the introduction):

un+1
i,j = uni,j + ∆t ·D(

uni+1,j − 2uni,j + uni−1,j

∆x
+
uni,j+1 − 2uni,j + uni,j−1

∆y
) + ∆t · S(x(i), y(j), tn)

S(x, y, t) = (2D − 1)exp(−t)sin(x)cos(y)

u(x, y, t = 0) = sin(x)cos(y)

Now that the diffusion equation for the concentration of u = u(x,y,t) is in 2D, we need to apply
the Dirichlet and Robin boundary conditions.

The Dirichlet boundary conditions are applied to the numerical diffusion solution by setting
the values on the four walls of the computational domain equal to the exact solution.

u(x, y, t) = exp(−t)sin(x)cos(y) (6)

The Robin boundary conditions are implemented by applying the following equations at the
four walls of the computational domain:

αu− ∂u

∂x
= exp(−t)cos(y)(αsin(−1) − cos(−1)) at left wall x = −1

αu+
∂u

∂x
= exp(−t)cos(y)(αsin(1) − cos(1)) at right wall x = 1

αu− ∂u

∂y
= exp(−t)sin(x)(αcos(−1) + sin(−1)) at bottom wall y = −1

αu+
∂u

∂y
= exp(−t)cos(y)(αcos(1) − cos(−1)) at top wall y = 1

3 Algorithms

The equations for the Dirichlet boundary conditions will be used to solve for the four walls
of the computational domain. Initially we would like to loop to solve for the interior part of the
computational domain. This leaves us with the four walls left to solve for in the computational

3



ME 17 HW5 Alex Nguyen

domain. This can be solved for by looking at each index (i,j) of our domain and solving for the
exact solutions at that index and using a for loop to find the rest of the points. Doing this method
for all four walls of the computational domain will yield a solution similar to the exact solution.

Also, the equations for the Robin boundary condition will be used to solve for the four walls
of the computational domain. Similar to before, this is done by looping to find all the values
within the domain then looking at an inner section of wall and apply the equation for the robin
boundary condition shown above in the background section. These equations will be used to create
”ghost points” in order to solve for the numerically approximated solution. When solving for the
non-corner parts of the computational domain, you only need to create one ”ghost point” and use
one equation for the Robin boundary condition shown in the Background section. When looking
at the corners, one needs to consider two of the boundary conditions because a corner is the in-
tersect on of two computational walls. This is done by creating two ghost points and then solving
the numerical solution, which should yield a solution similar to the exact and Dirichlet boundary
conditions solution.

This algorithm is implemented in the MATLAB code below, and the way to plot the solution
depends on commenting in which boundary condition you would like to solve for. This is done for
both cases, and plots of the final diagrams for both boundary condition solutions can be shown in
the results section. I ended up with plots which were very similar and the maximum error followed
the trend of being divided by four when the grid points are multiplied by 2.

4 Results

Dirichlet BC Dirichlet Error Robin BC Robin Error

10 x 10 4.7834 ·10−5 10 x 10 9.832 ·10−4

20 x 20 1.0102 ·10−5 20 x 20 2.2065 ·10−4

40 x 40 2.3622 ·10−6 40 x 40 5.2459 ·10−5

80 x 80 5.67355 ·10−7 80 x 80 1.2802 ·10−5

The table above shows a comparison of the numerical to the exact solution for the two different
boundary condition cases: Dirichlet and Robin cases. The error associated with each case is solved
for by taking the absolute value of the difference between the numerical diffusion solution and the
exact diffusion solution while varying the x and y grid points. It should be noted that as the grid
points are increased by two the error divides by approximately 4.

An example calculation for both the Dirichlet boundary condition and the Robin boundary
condition for 10 x 10 to 20 x 20 grid points is shown below.

4



ME 17 HW5 Alex Nguyen

Dirichlet Boundary Conditions:

mx x my :
10

20
= 2

error :
4.7834 · 10−5

1.0102 · 10−5
= 4.7351 (∼ 4)

Robin Boundary Conditions:

mx x my :
10

20
= 2

error :
9.832 · 10−4

2.2065 · 10−4
= 4.45593 (∼ 4)

5 Implementation in Matlab

The Matlab implementation, with comments, is given here:

%%ME 17 HW5 - Alex Nguyen

clc; clear; close all;

%% Initial Data:

% Domain:

xmin = -1; xmax = 1; mx = 80;

ymin = -1; ymax = 1; my = 80;

% Discretize the and and y axis:

x = linspace(xmin, xmax, mx); dx = x(2) - x(1);

y = linspace(ymin, ymax, my); dy = y(2) - y(1);

% Initial and final time:

t = 0; tfinal = 0.2;

% Diffusion coefficient:

D = 0.7;

% Initial solution:

un = zeros(mx,my);

for i = 1:mx

5



ME 17 HW5 Alex Nguyen

for j = 1:my

un(i,j) = sin(x(i))*cos(y(j));

end

end

% Source term and exact solution:

Exact = @(x,y,t) exp(-t)*sin(x)*cos(y);

S = @(x,y,t) (2*D-1)*exp(-t)*sin(x)*cos(y);

% Boundary conditions:

% BC = "DIRICHLET";

BC = "ROBIN";

if BC == "ROBIN"

alpha = 2;

gtop = @(x,t) exp(-t)*sin(x)*(alpha*cos(ymax) - sin(xmax));

gleft = @(y,t) exp(-t)*cos(y)*(alpha*sin(xmin) - cos(ymin));

gright = @(y,t) exp(-t)*cos(y)*(alpha*sin(xmax) + cos(ymax));

gbottom = @(x,t) exp(-t)*sin(x)*(alpha*cos(ymin) + sin(xmin));

end

%% Computation:

% Define the time step (the formula for dt is given by stability analysis,

% which is beyond the scope of this class):

dt = 0.2*dx*dx;

% Preallocation:

unp1 = zeros(mx, my);

ue = zeros(mx, my);

% March in time

while t < tfinal

if t + dt > tfinal

dt = tfinal - t; %ensures tfinal is reached

end

% Use the update rule to go from un to unp1 for all grid indices:

6



ME 17 HW5 Alex Nguyen

for i = 2:mx-1

for j = 2:my-1

unp1(i,j) = un(i,j) + D*dt*(un(i+1,j)-2*un(i,j)+un(i-1,j))/dx/dx ...

+ D*dt*(un(i,j+1)-2*un(i,j)+un(i,j-1))/dy/dy...

+ dt*S(x(i),y(j),t);

end

end

% Impose Dirichlet BCs to Each Wall:

if BC == "DIRICHLET"

for j = 1:my

unp1(1,j) = exp(-(t+dt))*sin(xmin)*cos(y(j)); %Left wall

unp1(mx,j) = exp(-(t+dt))*sin(xmax)*cos(y(j)); %Right wall

end

for i = 1:mx

unp1(i,1) = exp(-(t+dt))*sin(x(i))*cos(ymin); %Bottom wall

unp1(i,my) = exp(-(t+dt))*sin(x(i))*cos(ymax); %Top wall

end

elseif BC == "ROBIN"

for j = 2:my-1

unxo = un(2,j) + 2*dx*(gleft(y(j),t) - alpha*un(1,j)); %min x ghost value

unxm1 = un(mx-1,j) + 2*dx*(gright(y(j),t) - alpha*un(mx,j)); %max x ghost value

%Left Wall

unp1(1,j) = un(1,j) + D*dt*(un(2,j) - 2*un(1,j) + unxo)/dx/dx...

+ D*dt*(un(1,j+1) - 2*un(1,j) + un(1,j-1))/dy/dy ...

+ dt*S(x(1),y(j),t);

7



ME 17 HW5 Alex Nguyen

%Right Wall

unp1(mx,j) = un(mx,j) + D*dt*(unxm1 - 2*un(mx,j) + un(mx-1,j))/dx/dx...

+ D*dt*(un(mx,j+1) - 2*un(mx,j) + un(mx,j-1))/dy/dy ...

+ dt*S(x(mx),y(j),t);

end

for i = 2:mx-1

unyo = un(i,2) + 2*dy*(gbottom(x(i),t) - alpha*un(i,1)); %min y ghost value

unym1 = un(i,my-1) + 2*dy*(gtop(x(i),t) - alpha*un(i,my)); %max y ghost value

%Bottom wall

unp1(i,1) = un(i,1) + D*dt*(un(i+1,1) - 2*un(i,1) + un(i-1,1))/dx/dx...

+ D*dt*(un(i,2) - 2*un(i,1) + unyo)/dy/dy ...

+ dt*S(x(i),y(j),t);

%Top wall

unp1(i,my) = un(i,my) + D*dt*(un(i+1,my) - 2*un(i,my) + un(i-1,my))/dx/dx...

+ D*dt*(unym1 - 2*un(i,my) + un(i,my-1))/dy/dy ...

+ dt*S(x(i),y(j),t);

end

%Bottom Left Corner

unxo = un(2,1) + 2*dx*(gleft(y(1),t) - alpha*un(1,1));

unyo = un(1,2) + 2*dy*(gbottom(x(1),t) - alpha*un(1,1));

unp1(1,1) = un(1,1) + D*dt*(un(2,1) - 2*un(1,1) + unxo)/dx/dx ...

+ D*dt*(un(1,2) - 2*un(1,1) + unyo)/dy/dy ...

+ dt*S(x(1),y(1),t);

%Top Left Corner

unxo = un(2,my) + 2*dx*(gleft(y(my),t) - alpha*un(1,my));

unym1 = un(1,my-1) + 2*dy*(gtop(x(1),t) - alpha*un(1,my));

unp1(1,my) = un(1,my) + D*dt*(un(2,my) - 2*un(1,my) + unxo)/dx/dx ...

+ D*dt*(unym1 - 2*un(1,my) + un(1,my-1))/dy/dy ...

+ dt*S(x(1),y(my),t);

8



ME 17 HW5 Alex Nguyen

%Bottom Left Corner

unxm1 = un(mx-1,1) + 2*dx*(gright(y(1),t) - alpha*un(mx,1));

unyo = un(mx,2) + 2*dy*(gbottom(x(mx),t) - alpha*un(mx,1));

unp1(mx,1) = un(mx,1) + D*dt*(unxm1 - 2*un(mx,1) + un(mx-1,1))/dx/dx ...

+ D*dt*(un(mx,2) - 2*un(mx,1) + unyo)/dy/dy ...

+ dt*S(x(mx),y(1),t);

%Bottm Right Corner

unxm1 = un(mx-1,my) + 2*dx*(gright(y(my),t) - alpha*un(mx,my));

unym1 = un(mx,my-1) + 2*dy*(gtop(x(mx),t) - alpha*un(mx,my));

unp1(mx,my) = un(mx,my) + D*dt*(unxm1 - 2*un(mx,my) + un(mx-1,my))/dx/dx ...

+ D*dt*(unym1 - 2*un(mx,my) + un(mx,my-1))/dy/dy ...

+ dt*S(x(mx),y(my),t);

else

error(’The boundary condition %s is not defined. ABORT. \n’, BC);

end

% Update time and prepare for next iterate:

t = t + dt;

un = unp1;

% Exact solution:

for i = 1:mx

for j = 1:my

ue(i,j) = Exact(x(i),y(j),t);

end

end

%Plot:

figure(1)

mesh(x,y,un’)

xlabel(’x’); ylabel(’y’); zlabel(’u’);

axis([-1 1 -1 1 -1 1])

title(’Numerical Diffusion Solution’)

pause(dt);

9



ME 17 HW5 Alex Nguyen

figure(2)

mesh(x,y,ue’)

axis([-1 1 -1 1 -1 1])

xlabel(’x’); ylabel(’y’); zlabel(’u’);

title(’Exact Diffusion Solution’)

pause(dt);

end

error = abs(un - ue);

disp([’The maximum error is ’ num2str(max(max(error)))])

6 Boundary Condition Plots

10



ME 17 HW5 Alex Nguyen

(a) Exact Dirichlet Solution (b) Numerical Dirichlet Solution

(c) Exact Robin Solution (d) Numerical Robin Solution

Figure 1: Boundary Condition Solutions with grid points [20x20] at tfinal = 0.2 s

11



ME 17 HW5 Alex Nguyen

(a) Exact Dirichlet Solution (b) Numerical Dirichlet Solution

(c) Exact Robin Solution (d) Numerical Robin Solution

Figure 2: Boundary Condition Solutions with grid points [80x80] at tfinal = 0.2s

12


